Improving post-quantum cryptography through
cryptanalysis

John M. Schanck

Institute for Quantum Computing
Depatment of Combinatorics and Optimization
University of Waterloo

June 24, 2020

Outline

» Context: timeline of my Ph.D. and the NIST post-quantum
standardization effort.

» Some results from Chapters 2 and 3.

» Summary of recommendations for quantum cryptanalysis.

Context / 2016

Jan Started Ph.D.
Feb NIST announces post-quantum standards effort.
Aug NIST circulates draft call for proposals.

Oct Visit Peter Schwabe at Radboud — start of work on
NTRU-HRSS and Kyber.

Dec NIST circulates official call for proposals.

Context / 2017

June "High speed key encapsulation from NTRU" accepted at
CHES 2017. (Joint work with Hiilsing, Rijneveld, Schwabe.)

Nov “CRYSTALS—Kyber: a CCA-secure module-lattice-based
KEM" accepted at EuroS&P 2018. (Joint work with Bos,
Ducas, Kiltz, Lepoint, Lyubashevsky, Schwabe, Seiler, Stehlé.)

Nov Submitted NTRU-HRSS and CRYSTALS-Kyber to NIST.

Context / 2018

Jan Wrote “Multi-power post-quantum RSA” (Chapter 4).
Feb Began collaboration with Samuel Jaques (Chapter 2).
Apr NIST conference and EuroS&P.

Apr Visit Martin Albrecht at Royal Holloway (Chapter 3).

Nov Wrote “A Comparison of NTRU Variants”.

Nov Announced NTRU-HRSS and NTRUEncrypt merger.

Dec Google announces “CECPQ2" experiment, which features
NTRU.

Context / 2019

Jan NIST second round candidates announced.
Mar Submitted new versions of NTRU and Kyber.

June Cloudflare and Google announce they will compare
NTRU-HRSS and SIKEp434.

Aug Paper w/ Samuel Jaques (Chapter 2) receives “Best Young
Researcher Paper” Award at CRYPTO.

Aug NIST conference.

Context / 2020

Jan Wrote “An upper bound on the decryption failure rate of
static-key NewHope".

Jan “Decryption failure is more likely after success” accepted at
PQCrypto 2020. (Joint work with Nina Bindel.)

Mar Preparations for Round 3 NTRU: faster software for one
parameter set; decryption failure analysis for some variants.

Mar Consumer versions of Google Chrome start to support NTRU.

Driving questions

» How should we evaluate (post-quantum) security?

» How should we compare cryptosytems?

Driving questions

» How should we evaluate (post-quantum) security?

NIST's guidance:
> Security category 2
“Any attack that breaks the relevant security definition must
require computational resources comparable to or greater than
those required for collision search on a 256-bit hash function
(e.g. SHA256/ SHA3-256)."

Driving questions

» How should we evaluate (post-quantum) security?

NIST's guidance:

> Security category 2
“Any attack that breaks the relevant security definition must
require computational resources comparable to or greater than
those required for collision search on a 256-bit hash function
(e.g. SHA256/ SHA3-256)."

» The criteria must be met with respect to “all metrics that
NIST deems to be potentially relevant to practical security.”

Algorithms for 2-to-1 collision search

Algorithms for 2-to-1 collision search

1997 Brassard—Hgyer—Tapp:
p = 1 small quantum processor, m = O(n'/?) ~ 257 bits of
qRAM, and time for t = O(n'/3) ~ 2% sequential Grover
iterations of the hash function.

Algorithms for 2-to-1 collision search

1997 Brassard—Hgyer—Tapp:
p = 1 small quantum processor, m = O(n'/?) ~ 257 bits of
qRAM, and time for t = O(n'/3) ~ 2% sequential Grover
iterations of the hash function.

1996 van Oorschot—Wiener:
p=n'/% ~ 2% small classical processors, m = O(p) bits of
memory, and time for ¢t = O(n'/?/p) ~ 2% sequential hash
function evaluations.

Algorithms for 2-to-1 collision search

1997 Brassard—Hgyer—Tapp:
p = 1 small quantum processor, m = O(n'/?) ~ 257 bits of
qRAM, and time for t = O(n'/3) ~ 2% sequential Grover
iterations of the hash function.

1996 van Oorschot—Wiener:
p=n'/% ~ 2% small classical processors, m = O(p) bits of
memory, and time for ¢t = O(n'/?/p) ~ 2% sequential hash
function evaluations.

Criticism of BHT:
2001 Grover—Rudolph
2007 Bernstein
2017 Liu—Perlner

Algorithms for golden collision search

What resources are required for an n = 2'?® element golden collision search?

1996 Grover:
p = 1 small quantum processors and time for
t = O(vV/n2) ~ 2?8 sequential steps.

Algorithms for golden collision search

What resources are required for an n = 2'?® element golden collision search?

1996 Grover:
p = 1 small quantum processors and time for
t = O(Vn?) ~ 2'28 sequential steps.

2008 Tani:
p = 1 large quantum processor with m = O(n?/?) ~ 25
qubits, and time for t = O(n?/?) ~ 2% sequential quantum
walk steps.

Algorithms for golden collision search

What resources are required for an n = 2'?® element golden collision search?

1996 Grover:
p = 1 small quantum processors and time for
t = O(Vn?) ~ 2'28 sequential steps.

2008 Tani:
p = 1 large quantum processor with m = O(n?/?) ~ 25
qubits, and time for t = O(n?/?) ~ 2% sequential quantum
walk steps.

1996 van Oorschot—Wiener:
p = n'/? ~ 2% small classical processors, m = n?/3 ~ 25 bits
of memory, and time for t = O(y/n3/m/p) ~ 2! sequential
hash function evaluations.

Chapter 2: SIKE

Joint work with Samuel Jaques.

Our contributions:
» Cost analysis of quantum circuits for Tani’s algorithm.
> New data structure for Johnson graph vertices.
» Software to cost SIKE parameters.

P> Raised issues with the pervasive assumption of zero-cost
quantum storage.

Tani's algorithm
Quantum algorithm to find a (unique) claw between f,g: [n] — X.

{1, 2} {a, b}
{2,3} {b, c}
{13} {a c}

A pair of Johnson graphs
J({1,2,3},2) J ({a,b,c},2)

Tani's algorithm
Quantum algorithm to find a (unique) claw between f,g: [n] — X.

{1, 3, a, b}

{2,3,a, b}

{1,3,a,c}

T {1.2bq

The product of Johnson graphs
J({1,2,3},2) x J ({a,b,c},2)

Tani's algorithm
Quantum algorithm to find a (unique) claw between f,g: [n] — X.

Subroutines:

» Setup: construct Johnson graph vertices
{(z1, f(21)), ., (@r, f(2r))} and {(y1,9(y1)); - (Wr 9(yr)}

» Update: walk on product of Johnson graphs.
» Check: look for claws, f(z;) = g(y;).

Tani's algorithm
Quantum algorithm to find a (unique) claw between f,g: [n] — X.

Subroutines:

» Setup: construct Johnson graph vertices
{(z1, f(21)), ., (@r, f(2r))} and {(y1,9(y1)); - (Wr 9(yr)}

» Update: walk on product of Johnson graphs.
» Check: look for claws, f(z;) = g(y;).

Cost (Magniez—Nayak—Roland-Santha):

O (Setup + . Update + /7 - Check> .
T

Tani's algorithm
Quantum algorithm to find a (unique) claw between f,g: [n] — X.

Subroutines:

» Setup: construct Johnson graph vertices
{(z1, f(21)), ., (@r, f(2r))} and {(y1,9(y1)); - (Wr 9(yr)}

» Update: walk on product of Johnson graphs.
» Check: look for claws, f(z;) = g(y;).

Cost (Magniez—Nayak—Roland-Santha):

O (Setup + . Update + /7 - Check> .
T

If function evaluations are expensive, then the optimum is r = n?/3

... but data structure operations can be expensive.

Johnson vertex data structure

Data structure requirements:
» Store a subset of a fixed n element set.

» Insertion, deletion, membership, relation {1, 2}
counting, uniform sampling.

» History independence.

Previous approaches:

» 2004 Ambainis: Hash table + skip list. {2, 3}
» 2013 Bernstein—Jeffery—Lange—Meurer:
Radix tree.

Our approach: Flat sorted array.

, “ " {1, 3}
Previous approaches rely on “random access gates”.

We achieve a lower gate count in the standard circuit
model by not treating memory as a black box.

SIKE Parameters

First round submission

| k[2" min(v27, V39) | V2 | min(V27, ¥37)
217 1,00.2'% 264 1.26 2%
21! 1.00 - 2'% 2% 1.00 - 212
2128 102 . 2159

SIKEp503 | 128
SIKEp751 | 192
SIKEp964 | 256 || 223 1.45.2%8

SIKE Parameters

First round submission

| k[24! min(v2®, V3)

‘ V2F ‘ min(V22, V3¢)

SIKEp503 | 128 || 2'¥7 1.00-2!'% 264 1.26 - 2%
SIKEp751 | 192 | 2! 1.00 - 2'86 2% 1.00- 2%
SIKEp964 | 256 || 2*% 1.45. 278 2128 1.02-2'%

Recall: resources for golden collision search with n = 2128,

» Tani: p = 1 large quantum processor with
m = O(n?/?) ~ 2% qubits, and time for
t = O(n*/?) ~ 2% sequential quantum walk steps.

Available tradeoffs between time, gates,

log operations

» Tani’s algorithm does not achieve cost n2/3.

192 -

160

128

| | |
32 64 96 128
log hardware

log time

192

128

64

and hardware

!
|
|
|
1

| |
32 64 96
log hardware

—— Grover — Tani — VW

3

» VW wins under reasonable depth constraints.

]
128

> Low memory “dip” relies on zero-cost quantum storage.

Revised parameters

Second round submission

Target | Classical gate Classical security estimates
level | requirement Total time Gates x64 instructions
[38] [1] [21, Fig. 4(d})] [9]
memory 2* units | memory 2% bits | memory 2% units
SIKEp434 1 143 128 142 143
SIKEp503 2 146 152 169° 169°
SIKEp610 3 207 189 209 210
SIKEp751 5 272 - 263* 262

Also influenced by new cost analysis of VW:

> 2018 Adj—Cervantes-Vazquez—Chi-Dominguez—

Menezes—Rodriguez-Henriquez.
» 2019 Costello-Longa—Naehrig—Renes—Virdia

Chapter 3: NTRU / LWE and near neighbor search

Joint work with Martin Albrecht, Vlad Gheorghiu, and Eamonn
Postlethwaite.

Chapter 3: NTRU / LWE and near neighbor search

Joint work with Martin Albrecht, Vlad Gheorghiu, and Eamonn
Postlethwaite.

Contributions

» Software to optimize “near neighbor search” algorithms
parameters.

» Leading constants for a special case of “filtered quantum
search”.

» Analysis of “popcount filter”.

Near neighbor search

Goal: Given a list of N points on the unit sphere in R?, find N
pairs of points at angular distance < 7/3.

What computational resources are required?

Near neighbor search

Goal: Given a list of N points on the unit sphere in R?, find N
pairs of points at angular distance < 7/3.

What computational resources are required?

2016 Becker—Ducas—Gama—Laarhoven
exp,((0.207... 4+ o(1))d) bits of memory and
expy((0.292... 4 o(1))d) mostly parallelizable RAM
operations.

or

exp,((0.207... 4+ o(1))d) bits of qRAM and
expy((0.265 ... 4 o(1))d) qubit operations across many
different Grover searches.

Barriers to a practical quantum speedup

v

The asymptotic improvement is “small”.
gRAM might be more expensive than RAM.

Error correction and other intrinsic overhead for quantum
hardware.

Effectiveness of classical heuristics, e.g. “xor and population
count filter”.

Barriers to a practical quantum speedup

v

The asymptotic improvement is “small”.
gRAM might be more expensive than RAM.

Error correction and other intrinsic overhead for quantum
hardware.

Effectiveness of classical heuristics, e.g. “xor and
population count filter”.

Filtered classical search

g(l) &2 &3) &(4) s&bB) ... g7
f(1) f2) f(3) f(4) f(5) ... f(57)

Filtered classical search

0 0 g(3) s(4) &) ... 8(57)
f1) f(2) f(3) f4) f(5) ... f(57)

Filtered classical search

0 0 0 1 g®) ... g(57)
f(1) f(2) f(3) f(4) f(5) ... f(57)

Filtered classical search

0 0 0 1 g®) ... g(57)
f(1) f(2) f3) O f(5) ... f(57)

Filtered classical search

o o0 0 1 0 .. g5
f1) f(2) f(3) 0 f(5) ... f(57)

Filtered classical search

o o o 1 0 .. 1
f1) f(2) f(3) 0 f(5) ... f(57)

Filtered classical search

0 0 0 1 0
f(1) f(2) f3) O f(5)

Filtered quantum search

Lemma

Let f be a predicate on [N].

Let g be a filter for f with |fNg| ~ 1 and 4 < |g| < N/100.
We can find a root of f with probability > 1/14 at a cost of

(0.50...) - V'N - Cost(g) + (0.64...) - /]g| - Cost(f N g).

Note: There's a missing edge case in copy of thesis | gave you. It
has been fixed only the probability of success is affected.

Software: python/mpmath package

Calculates the circuit depth, width, gate count (etc.) for
popcount and filtered quantum search subroutines.

Calculates the accuracy of random popcount filters given
» points uniformly distributed on sphere;
» points uniformly distributed in a cap of angle 5.

Calculates the (normalized) spherical measure of
» spherical caps, using o F} representation of Cy(0)
» intersections of caps, using an integral representation.

logy (#0ps)

192 -

128 |-

64

---0.2924d
— RAM

|
100

|
200

|
300

|
400

|
500

600

logy (#o0ps)

192 |-

128 |-

64

L1
100

|
200

|
300

---0.2924d
RAM
---0.2652d

|
400

|
500

600

d

logy (#0ps)

192 |
128 |
64|

T S-0.2924d

7 — RAM
2 -~ 0.2652d
——q. gates
0k : L | | |
100 200 300 400 500

600

logy (#0ps)

192 |
128 |
o4 e - 0.2924d
o — RAM
27 - 0.2652d
‘;;/ — q. gates
——(. depth-width
0Ok ‘ L | | |
100 200 300 400 500

600

d

logy (#ops)

192 |-

128 |-

0.2924d
e — RAM
- 0.2652d
z —— (. gates
——q. depth-width
— q. GE19

64

S \ \ | \ i
100 200 300 400 500 600 d

Questionable assumptions and recommendations

Questionable assumptions and recommendations

» Unit-cost random access memory (Introduction)

» Technologically motivated memory cap, e.g. 2'9 bits.
» Zero-cost quantum storage (Chapter 2)

» Replace with unit-cost quantum storage.
» Unit-cost qRAM (Chapter 3)

» Technologically motivated memory cap, e.g. 240 bits.
> Skepticism. Maybe assume n-bit qRAM has latency Q(n'/?).

» Zero-cost classical computation (Chapter 4)
» Replace with RAM model classical computation.

Questionable assumptions and recommendations

» Unit-cost random access memory (Introduction)

» Technologically motivated memory cap, e.g. 2'9 bits.
» Zero-cost quantum storage (Chapter 2)

» Replace with unit-cost quantum storage.
» Unit-cost qRAM (Chapter 3)

» Technologically motivated memory cap, e.g. 240 bits.
> Skepticism. Maybe assume n-bit qRAM has latency Q(n'/?).

» Zero-cost classical computation (Chapter 4)
» Replace with RAM model classical computation.

Thanks!

