
Improving post-quantum cryptography through
cryptanalysis

John M. Schanck

Institute for Quantum Computing
Depatment of Combinatorics and Optimization

University of Waterloo

June 24, 2020

Outline

I Context: timeline of my Ph.D. and the NIST post-quantum
standardization effort.

I Some results from Chapters 2 and 3.

I Summary of recommendations for quantum cryptanalysis.

Context / 2016

Jan Started Ph.D.

Feb NIST announces post-quantum standards effort.

Aug NIST circulates draft call for proposals.

Oct Visit Peter Schwabe at Radboud — start of work on
NTRU-HRSS and Kyber.

Dec NIST circulates official call for proposals.

Context / 2017

June “High speed key encapsulation from NTRU” accepted at
CHES 2017. (Joint work with Hülsing, Rijneveld, Schwabe.)

Nov “CRYSTALS–Kyber: a CCA-secure module-lattice-based
KEM” accepted at EuroS&P 2018. (Joint work with Bos,
Ducas, Kiltz, Lepoint, Lyubashevsky, Schwabe, Seiler, Stehlé.)

Nov Submitted NTRU-HRSS and CRYSTALS–Kyber to NIST.

Context / 2018

Jan Wrote “Multi-power post-quantum RSA” (Chapter 4).

Feb Began collaboration with Samuel Jaques (Chapter 2).

Apr NIST conference and EuroS&P.

Apr Visit Martin Albrecht at Royal Holloway (Chapter 3).

Nov Wrote “A Comparison of NTRU Variants”.

Nov Announced NTRU-HRSS and NTRUEncrypt merger.

Dec Google announces “CECPQ2” experiment, which features
NTRU.

Context / 2019

Jan NIST second round candidates announced.

Mar Submitted new versions of NTRU and Kyber.

June Cloudflare and Google announce they will compare
NTRU-HRSS and SIKEp434.

Aug Paper w/ Samuel Jaques (Chapter 2) receives “Best Young
Researcher Paper” Award at CRYPTO.

Aug NIST conference.

Context / 2020

Jan Wrote “An upper bound on the decryption failure rate of
static-key NewHope”.

Jan “Decryption failure is more likely after success” accepted at
PQCrypto 2020. (Joint work with Nina Bindel.)

Mar Preparations for Round 3 NTRU: faster software for one
parameter set; decryption failure analysis for some variants.

Mar Consumer versions of Google Chrome start to support NTRU.

Driving questions

I How should we evaluate (post-quantum) security?

I How should we compare cryptosytems?

NIST’s guidance:

I Security category 2
“Any attack that breaks the relevant security definition must
require computational resources comparable to or greater than
those required for collision search on a 256-bit hash function
(e.g. SHA256/ SHA3-256).”

I The criteria must be met with respect to “all metrics that
NIST deems to be potentially relevant to practical security.”

Driving questions

I How should we evaluate (post-quantum) security?

I How should we compare cryptosytems?

NIST’s guidance:

I Security category 2
“Any attack that breaks the relevant security definition must
require computational resources comparable to or greater than
those required for collision search on a 256-bit hash function
(e.g. SHA256/ SHA3-256).”

I The criteria must be met with respect to “all metrics that
NIST deems to be potentially relevant to practical security.”

Driving questions

I How should we evaluate (post-quantum) security?

I How should we compare cryptosytems?

NIST’s guidance:

I Security category 2
“Any attack that breaks the relevant security definition must
require computational resources comparable to or greater than
those required for collision search on a 256-bit hash function
(e.g. SHA256/ SHA3-256).”

I The criteria must be met with respect to “all metrics that
NIST deems to be potentially relevant to practical security.”

Algorithms for 2-to-1 collision search

1997 Brassard–Høyer–Tapp:
p = 1 small quantum processor, m = O(n1/3) ≈ 285 bits of
qRAM, and time for t = O(n1/3) ≈ 285 sequential Grover
iterations of the hash function.

1996 van Oorschot–Wiener:
p = n1/6 ≈ 243 small classical processors, m = O(p) bits of
memory, and time for t = O(n1/2/p) ≈ 285 sequential hash
function evaluations.

Criticism of BHT:
2001 Grover–Rudolph
2007 Bernstein
2017 Liu–Perlner

Algorithms for 2-to-1 collision search

1997 Brassard–Høyer–Tapp:
p = 1 small quantum processor, m = O(n1/3) ≈ 285 bits of
qRAM, and time for t = O(n1/3) ≈ 285 sequential Grover
iterations of the hash function.

1996 van Oorschot–Wiener:
p = n1/6 ≈ 243 small classical processors, m = O(p) bits of
memory, and time for t = O(n1/2/p) ≈ 285 sequential hash
function evaluations.

Criticism of BHT:
2001 Grover–Rudolph
2007 Bernstein
2017 Liu–Perlner

Algorithms for 2-to-1 collision search

1997 Brassard–Høyer–Tapp:
p = 1 small quantum processor, m = O(n1/3) ≈ 285 bits of
qRAM, and time for t = O(n1/3) ≈ 285 sequential Grover
iterations of the hash function.

1996 van Oorschot–Wiener:
p = n1/6 ≈ 243 small classical processors, m = O(p) bits of
memory, and time for t = O(n1/2/p) ≈ 285 sequential hash
function evaluations.

Criticism of BHT:
2001 Grover–Rudolph
2007 Bernstein
2017 Liu–Perlner

Algorithms for 2-to-1 collision search

1997 Brassard–Høyer–Tapp:
p = 1 small quantum processor, m = O(n1/3) ≈ 285 bits of
qRAM, and time for t = O(n1/3) ≈ 285 sequential Grover
iterations of the hash function.

1996 van Oorschot–Wiener:
p = n1/6 ≈ 243 small classical processors, m = O(p) bits of
memory, and time for t = O(n1/2/p) ≈ 285 sequential hash
function evaluations.

Criticism of BHT:
2001 Grover–Rudolph
2007 Bernstein
2017 Liu–Perlner

Algorithms for golden collision search
What resources are required for an n = 2128 element golden collision search?

1996 Grover:
p = 1 small quantum processors and time for
t = O(

√
n2) ≈ 2128 sequential steps.

2008 Tani:
p = 1 large quantum processor with m = O(n2/3) ≈ 285

qubits, and time for t = O(n2/3) ≈ 285 sequential quantum
walk steps.

1996 van Oorschot–Wiener:
p = n1/3 ≈ 243 small classical processors, m = n2/3 ≈ 285 bits
of memory, and time for t = O(

√
n3/m/p) ≈ 2106 sequential

hash function evaluations.

Algorithms for golden collision search
What resources are required for an n = 2128 element golden collision search?

1996 Grover:
p = 1 small quantum processors and time for
t = O(

√
n2) ≈ 2128 sequential steps.

2008 Tani:
p = 1 large quantum processor with m = O(n2/3) ≈ 285

qubits, and time for t = O(n2/3) ≈ 285 sequential quantum
walk steps.

1996 van Oorschot–Wiener:
p = n1/3 ≈ 243 small classical processors, m = n2/3 ≈ 285 bits
of memory, and time for t = O(

√
n3/m/p) ≈ 2106 sequential

hash function evaluations.

Algorithms for golden collision search
What resources are required for an n = 2128 element golden collision search?

1996 Grover:
p = 1 small quantum processors and time for
t = O(

√
n2) ≈ 2128 sequential steps.

2008 Tani:
p = 1 large quantum processor with m = O(n2/3) ≈ 285

qubits, and time for t = O(n2/3) ≈ 285 sequential quantum
walk steps.

1996 van Oorschot–Wiener:
p = n1/3 ≈ 243 small classical processors, m = n2/3 ≈ 285 bits
of memory, and time for t = O(

√
n3/m/p) ≈ 2106 sequential

hash function evaluations.

Chapter 2: SIKE

Joint work with Samuel Jaques.

Our contributions:

I Cost analysis of quantum circuits for Tani’s algorithm.

I New data structure for Johnson graph vertices.

I Software to cost SIKE parameters.

I Raised issues with the pervasive assumption of zero-cost
quantum storage.

Tani’s algorithm
Quantum algorithm to find a (unique) claw between f, g : [n] → X.

{1, 3}

{2, 3}

{1, 2}

{a, c}

{b, c}

{a, b}

A pair of Johnson graphs

J ({1, 2, 3}, 2) J ({a, b, c}, 2)

Tani’s algorithm
Quantum algorithm to find a (unique) claw between f, g : [n] → X.

{1, 2, b, c}

{1, 2, a, c}

{1, 2, a, b}

{1, 3, a, b}

{1, 3, b, c}

{1, 3, a, c}{2, 3, a, b}

{2, 3, a, c}

{2, 3, b, c}

The product of Johnson graphs
J ({1, 2, 3}, 2)× J ({a, b, c}, 2)

Tani’s algorithm
Quantum algorithm to find a (unique) claw between f, g : [n] → X.

Subroutines:

I Setup: construct Johnson graph vertices
{(x1, f(x1)), ..., (xr, f(xr))} and {(y1, g(y1)), ..., (yr, g(yr))}

I Update: walk on product of Johnson graphs.

I Check: look for claws, f(xi) = g(yj).

Cost (Magniez–Nayak–Roland–Santha):

Õ

(
Setup +

n√
r
· Update +

√
r · Check

)
.

If function evaluations are expensive, then the optimum is r = n2/3

. . . but data structure operations can be expensive.

Tani’s algorithm
Quantum algorithm to find a (unique) claw between f, g : [n] → X.

Subroutines:

I Setup: construct Johnson graph vertices
{(x1, f(x1)), ..., (xr, f(xr))} and {(y1, g(y1)), ..., (yr, g(yr))}

I Update: walk on product of Johnson graphs.

I Check: look for claws, f(xi) = g(yj).

Cost (Magniez–Nayak–Roland–Santha):

Õ

(
Setup +

n√
r
· Update +

√
r · Check

)
.

If function evaluations are expensive, then the optimum is r = n2/3

. . . but data structure operations can be expensive.

Tani’s algorithm
Quantum algorithm to find a (unique) claw between f, g : [n] → X.

Subroutines:

I Setup: construct Johnson graph vertices
{(x1, f(x1)), ..., (xr, f(xr))} and {(y1, g(y1)), ..., (yr, g(yr))}

I Update: walk on product of Johnson graphs.

I Check: look for claws, f(xi) = g(yj).

Cost (Magniez–Nayak–Roland–Santha):

Õ

(
Setup +

n√
r
· Update +

√
r · Check

)
.

If function evaluations are expensive, then the optimum is r = n2/3

. . . but data structure operations can be expensive.

Johnson vertex data structure

Data structure requirements:

I Store a subset of a fixed n element set.

I Insertion, deletion, membership, relation
counting, uniform sampling.

I History independence.

Previous approaches:

I 2004 Ambainis: Hash table + skip list.

I 2013 Bernstein–Jeffery–Lange–Meurer:
Radix tree.

Our approach: Flat sorted array.

Previous approaches rely on “random access gates”.

We achieve a lower gate count in the standard circuit

model by not treating memory as a black box.

{1, 3}

{2, 3}

{1, 2}

SIKE Parameters
First round submission

Recall: resources for golden collision search with n = 2128.

I Tani: p = 1 large quantum processor with
m = O(n2/3) ≈ 285 qubits, and time for
t = O(n2/3) ≈ 285 sequential quantum walk steps.

SIKE Parameters
First round submission

Recall: resources for golden collision search with n = 2128.

I Tani: p = 1 large quantum processor with
m = O(n2/3) ≈ 285 qubits, and time for
t = O(n2/3) ≈ 285 sequential quantum walk steps.

Available tradeoffs between time, gates, and hardware

32 64 96 128

128

160

192

log hardware

lo
g

op
er

at
io

n
s

32 64 96 128
0

64

128

192

log hardware

lo
g

ti
m

e
Grover Tani VW

I Tani’s algorithm does not achieve cost n2/3.

I VW wins under reasonable depth constraints.

I Low memory “dip” relies on zero-cost quantum storage.

Revised parameters

Second round submission

Also influenced by new cost analysis of VW:

I 2018 Adj–Cervantes-Vázquez–Chi-Doḿınguez–
Menezes–Rodŕıguez-Henŕıquez.

I 2019 Costello–Longa–Naehrig–Renes–Virdia

Chapter 3: NTRU / LWE and near neighbor search

Joint work with Martin Albrecht, Vlad Gheorghiu, and Eamonn
Postlethwaite.

Contributions

I Software to optimize “near neighbor search” algorithms
parameters.

I Leading constants for a special case of “filtered quantum
search”.

I Analysis of “popcount filter”.

Chapter 3: NTRU / LWE and near neighbor search

Joint work with Martin Albrecht, Vlad Gheorghiu, and Eamonn
Postlethwaite.

Contributions

I Software to optimize “near neighbor search” algorithms
parameters.

I Leading constants for a special case of “filtered quantum
search”.

I Analysis of “popcount filter”.

Near neighbor search

Goal: Given a list of N points on the unit sphere in Rd, find N
pairs of points at angular distance < π/3.

What computational resources are required?

2016 Becker–Ducas–Gama–Laarhoven
exp2((0.207 . . .+ o(1))d) bits of memory and
exp2((0.292 . . .+ o(1))d) mostly parallelizable RAM
operations.

or
exp2((0.207 . . .+ o(1))d) bits of qRAM and
exp2((0.265 . . .+ o(1))d) qubit operations across many
different Grover searches.

Near neighbor search

Goal: Given a list of N points on the unit sphere in Rd, find N
pairs of points at angular distance < π/3.

What computational resources are required?

2016 Becker–Ducas–Gama–Laarhoven
exp2((0.207 . . .+ o(1))d) bits of memory and
exp2((0.292 . . .+ o(1))d) mostly parallelizable RAM
operations.

or
exp2((0.207 . . .+ o(1))d) bits of qRAM and
exp2((0.265 . . .+ o(1))d) qubit operations across many
different Grover searches.

Barriers to a practical quantum speedup

I The asymptotic improvement is “small”.

I qRAM might be more expensive than RAM.

I Error correction and other intrinsic overhead for quantum
hardware.

I Effectiveness of classical heuristics, e.g. “xor and population
count filter”.

Barriers to a practical quantum speedup

I The asymptotic improvement is “small”.

I qRAM might be more expensive than RAM.

I Error correction and other intrinsic overhead for quantum
hardware.

I Effectiveness of classical heuristics, e.g. “xor and
population count filter”.

Filtered classical search

g(1) g(2) g(3) g(4) g(5) . . . g(57)

f(1) f(2) f(3) f(4) f(5) . . . f(57)

Filtered classical search

0 0 g(3) g(4) g(5) . . . g(57)

f(1) f(2) f(3) f(4) f(5) . . . f(57)

Filtered classical search

0 0 0 1 g(5) . . . g(57)

f(1) f(2) f(3) f(4) f(5) . . . f(57)

Filtered classical search

0 0 0 1 g(5) . . . g(57)

f(1) f(2) f(3) 0 f(5) . . . f(57)

Filtered classical search

0 0 0 1 0 . . . g(57)

f(1) f(2) f(3) 0 f(5) . . . f(57)

Filtered classical search

0 0 0 1 0 . . . 1

f(1) f(2) f(3) 0 f(5) . . . f(57)

Filtered classical search

0 0 0 1 0 . . . 1

f(1) f(2) f(3) 0 f(5) . . . 1

Filtered quantum search

Lemma
Let f be a predicate on [N].
Let g be a filter for f with |f ∩ g| ≈ 1 and 4 < |g| < N/100.
We can find a root of f with probability ≥ 1/14 at a cost of

(0.50...) ·
√
N · Cost(g) + (0.64...) ·

√
|g| · Cost(f ∩ g).

Note: There’s a missing edge case in copy of thesis I gave you. It
has been fixed only the probability of success is affected.

Software: python/mpmath package

Calculates the circuit depth, width, gate count (etc.) for
popcount and filtered quantum search subroutines.

Calculates the accuracy of random popcount filters given

I points uniformly distributed on sphere;

I points uniformly distributed in a cap of angle β.

Calculates the (normalized) spherical measure of

I spherical caps, using 2F1 representation of Cd(θ)

I intersections of caps, using an integral representation.

100 200 300 400 500 600

64

128

192

d

lo
g
2
(#
op
s)

0.2924 d
RAM

100 200 300 400 500 600
0

64

128

192

d

lo
g
2
(#
op
s)

0.2924 d
RAM

0.2652 d

100 200 300 400 500 600
0

64

128

192

d

lo
g
2
(#
op
s)

0.2924 d
RAM

0.2652 d
q. gates

100 200 300 400 500 600
0

64

128

192

d

lo
g
2
(#
op
s)

0.2924 d
RAM

0.2652 d
q. gates

q. depth-width

100 200 300 400 500 600
0

64

128

192

d

lo
g
2
(#
op
s)

0.2924 d
RAM

0.2652 d
q. gates

q. depth-width
q. GE19

Questionable assumptions and recommendations

I Unit-cost random access memory (Introduction)
I Technologically motivated memory cap, e.g. 2140 bits.

I Zero-cost quantum storage (Chapter 2)
I Replace with unit-cost quantum storage.

I Unit-cost qRAM (Chapter 3)
I Technologically motivated memory cap, e.g. 2140 bits.
I Skepticism. Maybe assume n-bit qRAM has latency Ω(n1/3).

I Zero-cost classical computation (Chapter 4)
I Replace with RAM model classical computation.

Thanks!

Questionable assumptions and recommendations

I Unit-cost random access memory (Introduction)
I Technologically motivated memory cap, e.g. 2140 bits.

I Zero-cost quantum storage (Chapter 2)
I Replace with unit-cost quantum storage.

I Unit-cost qRAM (Chapter 3)
I Technologically motivated memory cap, e.g. 2140 bits.
I Skepticism. Maybe assume n-bit qRAM has latency Ω(n1/3).

I Zero-cost classical computation (Chapter 4)
I Replace with RAM model classical computation.

Thanks!

Questionable assumptions and recommendations

I Unit-cost random access memory (Introduction)
I Technologically motivated memory cap, e.g. 2140 bits.

I Zero-cost quantum storage (Chapter 2)
I Replace with unit-cost quantum storage.

I Unit-cost qRAM (Chapter 3)
I Technologically motivated memory cap, e.g. 2140 bits.
I Skepticism. Maybe assume n-bit qRAM has latency Ω(n1/3).

I Zero-cost classical computation (Chapter 4)
I Replace with RAM model classical computation.

Thanks!

