
Choosing Parameters for NTRUEncrypt

Jeff Hoffstein1, Jill Pipher1, John M. Schanck2,3, Joseph H. Silverman1,
William Whyte3, and Zhenfei Zhang3(B)

1 Brown University, Providence, USA
{jhoff,jpipher,jhs}@math.brown.edu

2 University of Waterloo, Waterloo, Canada
3 Security Innovation, Wilmington, USA

{wwhyte,zzhang,jschanck}@securityinnovation.com

Abstract. We describe a method for generating parameter sets, and
calculating security estimates, for NTRUEncrypt. Our security analyses
consider lattice attacks, the hybrid attack, subfield attacks, and quantum
search. Analyses are provided for the IEEE 1363.1-2008 product-form
parameter sets, for the NTRU Challenge parameter sets, and for two
new parameter sets. These new parameter sets are designed to provide
≥ 128-bit post-quantum security.

Keywords: Public-key cryptography/NTRUEncrypt · Cryptanalysis ·
Parameter derivation

1 Introduction and Notation

In this note we will assume some familiarity with the details and notation of
NTRUEncrypt. The reader desiring further background should consult standard
references such as [11,12,16]. The key parameters are summarized in Table 1.
Each is, implicitly, a function of the security parameter λ.

NTRUEncrypt uses a ring of convolution polynomials; a polynomial ring para-
meterized by a prime N , and an integer q, of the form RN,q = (Z/qZ)[X]/
(XN − 1). The subscript will be dropped when discussing generic properties of
such rings. We denote multiplication in R by ∗. An NTRUEncrypt public key is
a generator for a cyclic R-module of rank 2, and is denoted (1, h). The private
key is an element of this module which is “small” with respect to a given norm
and is denoted (f, g). Ring elements are written in the monomial basis. When
an element of Z/qZ is lifted to Z, or reduced modulo p, it is identified with its
unique representative in [−q/2, q/2)∩Z. The aforementioned norm is the 2-norm
on coefficient vectors:

∥
∥
∥
∥
∥

N−1∑

i=0

aix
i

∥
∥
∥
∥
∥

2

=
N−1∑

i=0

a2
i .

An extended version of the paper is available at [10].

c© Springer International Publishing AG 2017
H. Handschuh (Ed.): CT-RSA 2017, LNCS 10159, pp. 3–18, 2017.
DOI: 10.1007/978-3-319-52153-4 1

4 J. Hoffstein et al.

Table 1.

Primary NTRUEncrypt parameters

N, q Ring parameters RN,q = Zq[X]/(XN − 1).

p Message space modulus.

d1, d2, d3 Non-zero coefficient counts for product form polynomial terms.

dg Non-zero coefficient count for private key component g.

dm Message representative Hamming weight constraint

This norm is extended to elements (a, b) ∈ R ⊕ R as

‖(a, b)‖2 = ‖a‖2 + ‖b‖2.

There is a large degree of freedom in choosing the structure of the private
key. In previous parameter recommendations [9,16] the secret polynomials f
and g have been chosen uniformly from a set of binary or trinary polynomials
with a prescribed number of non-zero coefficients. These are far from the only
choices. The provably secure variant of NTRUEncrypt by Stehlé and Steinfeld
[17], samples f and g from a discrete Gaussian distribution, and the NTRU-like
signature scheme BLISS [6] samples its private keys from a set of polynomials
with a prescribed number of ±1s and ±2s. The reasons for such choices are varied:
binary polynomials were believed to allow for a small q parameter, but the desire
to increase resistance against the hybrid combinatorial attack of [15] motivated
the use of larger sample spaces in both NTRUEncrypt and BLISS. In the provably
secure variant the public key must be computationally indistinguishable from
an invertible ring element chosen uniformly at random. The discrete Gaussian
distribution has several nice analytic properties that simplify the proof of such
a claim, and sampling from such a distribution is reasonably efficient.

Our parameter choices use product-form polynomials for f and for the blind-
ing polynomial, r, used during encryption. First introduced to NTRUEncrypt in
[13], product form polynomials allow for exceptionally fast multiplication in R
without the use of the Fourier transform.

An extended version of the paper is available at [10] which includes the
following:

– a more detailed description of NTRUEncrypt algorithms;
– a survey of other known attacks and the security level against those attacks;
– tables that list suggested q parameter; and parameters for the NTRU chal-

lenge [2];
– some additional analysis for the hybrid attack.

Choosing Parameters for NTRUEncrypt 5

2 General Considerations

2.1 Ring Parameters

The only restrictions on p and q are that they generate coprime ideals of
Z[X]/(XN − 1). In this document we will fix p = 3 and only consider q that are
a power of 2. This choice is motivated by the need for fast arithmetic modulo q,
and by the impact of p on decryption failure probability (see Sect. 6).

For NTRUEncrypt we take N to be prime. Many ideal lattice cryptosystems
use the ring Zq[X]/(X2n + 1) primarily because X2n + 1 is irreducible over the
rationals. Some complications arise from using a reducible ring modulus, but
these are easily remedied.

For prime N the ring modulus factors into irreducibles over Q as

XN − 1 = (X − 1)ΦN (X)

where ΦN (X) is the N th cyclotomic polynomial. To maximize the probability
that a random f is invertible in RN,q we should ensure that ΦN (X) is irreducible
modulo 2, i.e. we should choose N such that (2) is inert in the N th cyclotomic
field. Such a choice of N ensures that f is invertible so long as f(1) �= 0 (mod 2).
It is not strictly necessary that ΦN (X) be irreducible modulo 2, and one may
allow a small number of high degree factors while maintaining a negligible prob-
ability of failure. Reasonable primes is provided in the full version of the paper
[10]. Similar considerations apply for other choices of q.

2.2 Private Key, Blinding Polynomial, and Message Parameters

The analysis below will be considerably simpler if we fix how the values d1, d2, d3,
and dg will be derived given N and q.

We set the notation:

TN = {trinary polynomials}

TN (d, e) =
{

trinary polynomials with exactly
d ones and e minus ones

}

PN (d1, d2, d3) =
{

product form polynomials
A1 ∗ A2 + A3 : Ai ∈ TN (di, di)

}

.

If N is fixed we will write T , T (d, e), and P(d1, d2, d3) instead.
A product form private key is of the form (f, g) = (1 + pF, g) with

F ∈ PN (d1, d2, d3) and g ∈ TN (dg + 1, dg). Note that f must be invertible in
RN,q for the corresponding public key (1, h) = (1, f−1g) to exist. The parame-
ters recommended in this document ensure that, when F is sampled uniformly
from PN (d1, d2, d3), the polynomial 1 + pF will always be invertible. One may
optionally check that g is invertible, although this is similarly unnecessary for
appropriately chosen parameters.

In order to maximize the size of the key space, while keeping a prescribed
number of ±1s in g, we take dg = �N/3	. The expected number of non-zero

6 J. Hoffstein et al.

coefficients in f is 4d1d2 + 2d3. In order to roughly balance the difficulty of the
search problems for f and g (Sect. 4), we take d1 ≈ d2 ≈ d3 with d1 = �α	 where
α is the positive root of 2x2 + x − N/3. This gives us 2d1d2 + d3 ≈ N/3.

A Hamming weight restriction is placed on message representatives to avoid
significant variation in the difficulty of message recovery. Message representatives
are trinary polynomials; we require that the number of +1s, −1s, and 0s each
be greater than dm. The procedure for choosing dm is given in Sect. 5.

3 Review of the Hybrid Attack

We consider the hybrid attack [15] to be the strongest attack against NTRUEn-
crypt, and believe that cost estimates for the hybrid attack give a good indication
of the security of typical NTRUEncrypt parameter sets. Information on other
attacks can be found from the full version of the paper [10].

Suppose one is given an NTRU public key (1, h) along with the relevant
parameter set. This information determines a basis for a lattice L of rank 2N
generated by the rows of

L =
(

qIN 0
H IN

)

(1)

wherein the block H is the circulant matrix corresponding to h, i.e. its rows are
the coefficient vectors of xi∗h for i ∈ [0, N−1]. The map (1, h)RN,q → L/qL that
sends (a, b) �→ (b0, . . . , bN−1, a0, . . . , aN−1) is an additive group isomorphism
that preserves the norm defined in Eq. 1. As such, if one can find short vectors
of L one can find short elements of the corresponding NTRU module.

The determinant of L is Δ = qN , giving us a Gaussian expected shortest
vector of length λ1 ≈

√

qN/πe, though the actual shortest vector will be some-
what smaller than this. A pure lattice reduction attack would attempt to solve
Hermite-SVP1 with factor λ/Δ1/2N =

√

N/πe, which is already impractical for
N around 100. The experiments of [8] support this claim, they were able to
find short vectors in three NTRU lattices with N = 107 and q = 64 that were
generated using binary private keys. Only one of these was broken with BKZ
alone, the other two required a heuristic combination of BKZ on the full lattice
and BKZ on a projected lattice of smaller dimension with block sizes between
35 and 41.

Consequently the best attacks against NTRUEncrypt tend to utilize a com-
bination of lattice reduction and combinatorial search. In this section we will
review one such method from [15], known as the hybrid attack.

The rough idea is as follows. One first chooses N1 < N and extracts a block,
L1, of 2N1 × 2N1 coefficients from the center of the matrix L defined in Eq. 1.

1 In practice q has a strong impact on the effectiveness of pure lattice reduction attacks
as well. For large q the relevant problem becomes Unique-SVP which appears to
be somewhat easier than Hermite-SVP. Conservative parameter generation should
ensure that it is difficult to solve Hermite-SVP to within a factor of q/Δ1/2N =

√
q.

Choosing Parameters for NTRUEncrypt 7

The rows of L1 are taken to generate a lattice L1.
(

qIN 0
H IN

)

=

⎛

⎝

qIr1 0 0
∗ L1 0
∗ ∗ Ir2

⎞

⎠

A lattice reduction algorithm is applied to find a unimodular transformation, U ′,
such that U ′L1 is reduced, and an orthogonal transformation, Y ′, is computed
such that U ′L1Y

′ = T ′ is in lower triangular form. These transformations are
applied to the original basis to produce a basis for an isomorphic lattice:

T = ULY =

⎛

⎝

Ir1 0 0
0 U ′ 0
0 0 Ir2

⎞

⎠

⎛

⎝

qIr1 0 0
∗ L1 0
∗ ∗ Ir2

⎞

⎠

⎛

⎝

Ir1 0 0
0 Y ′ 0
0 0 Ir2

⎞

⎠ =

⎛

⎝

qIr1 0 0
∗ T ′ 0
∗ ∗ Ir2

⎞

⎠ .

Notice that (g, f)Y is a short vector in the resulting lattice.
In general it is not necessary for the extracted block to be the central 2N1 ×

2N1 matrix, and it is sometimes useful to consider blocks shifted s indices to the
top left along the main diagonal. Let r1 = N − N1 − s be the index of the first
column of the extracted block and r2 = N + N1 − s be the index of the final
column. The entries on the diagonal of T will have values {qα1 , qα2 , . . . , qα2N },
where α1 + · · · + α2N = N , and the αi, for i in the range [r1, r2], will come very
close to decreasing linearly. That is to say, L1 will roughly obey the geometric
series assumption (GSA). The rate at which the αi decrease can be predicted
very well based on the root Hermite factor achieved by the lattice reduction
algorithm used.2 Clearly αi = 1 for i < r1 and αi = 0 for i > r2. By the analysis
in [10] we expect

αr1 =
1
2

+
s

2N1
+ 2N1 logq(δ) (2)

αr2 =
1
2

+
s

2N1
− 2N1 logq(δ), (3)

and a linear decrease in-between. The profile of the basis will look like one of
the examples in Fig. 1.

By a lemma of Furst and Kannan (Lemma 1 in [15]), if y = uT + x for
vectors u and x in Z

2N , and −Ti,i/2 < xi ≤ Ti,i/2, then reducing y against T
with Babai’s nearest plane algorithm will yield x exactly. Thus if v is a shortest
vector in L and αr2 > logq(2‖v‖∞), it is guaranteed that v can be found by
enumerating candidates for its final K = 2N −r2 coefficients. Further knowledge
about v can also diminish the search space. For example, if it is known that there
is a trinary vector in L, and αr2 > logq(2), then applying Babai’s nearest plane
algorithm to some vector in the set {(0|v′)T − (0|v′) : v′ ∈ TK} will reveal it.

The optimal approach for the attacker is determined by the balancing the cost
of combinatorial search on K coordinates against the cost of lattice reduction
that results in a sufficiently large α2N−K . Unsurprisingly, näıve enumeration of
the possible v′ is not optimal.
2 A lattice reduction algorithm that achieves root Hermite factor δ returns a basis

with ‖b1‖2 ≈ δn det(Λ)1/n.

8 J. Hoffstein et al.

Fig. 1. Log length of ith Gram-Schmidt vector, logq(‖b∗
i ‖).

4 Meet in the Middle Search

The adaptation of meet-in-the-middle search algorithms to the structure of
binary NTRU keys is due to Odlyzko and described in [14]. Generalizations
to other private key types are described by Howgrave-Graham in [15]; this is the
presentation we follow here. The key idea is to decompose the search space S
as S ⊆ S′ ⊕ S′ for some set S′ such that |S′| ≈

√

|S|. If s1 and s2 are elements
of S′ such that s1 + s2 = f , and (f, g) is an element with small coefficients in
the NTRU module generated by (1, h), then (s1, s1 ∗ h) = (f, g) − (s2, s2 ∗ h). In
particular, when the coefficients of g are trinary, this implies that s1∗h ≈ −s2∗h
coordinate-wise.

Under the assumption that all approximate collisions can be detected, a meet
in the middle search on the full product form NTRUEncrypt key space would
require both time and memory of order O(

√

|PN (d1, d2, d3)|).
A meet in the middle search is also possible on a basis that has been pre-

processed for the hybrid attack as in Eq. 2. The assumption that all approximate
collisions can be detected will turn out to be untenable in this case, however, in
the interest of deriving conservative parameters we will assume that this com-
plication does not arise. Let Π : ZN → Z

K be a projection3 onto K coordinates
of ZN . Let PΠ = {vΠ : v ∈ PN (d1, d2, d3)}. The f component of the private key
is guaranteed to appear in PΠ , so the expected time and memory required for
the attack is O(

√

|PΠ |). That said, estimating the size of PΠ is non-trivial.
We may also consider an adversary who attempts this attack on the lattice

corresponding to (1, h−1) and searches for the g component of the private key
instead. This may in fact be the best strategy for the adversary, because while
|PN (d1, d2, d3)| < |TN (dg + 1, dg)| for parameters of interest to us, the presence

3 We will abuse notation slightly and allow Π to act on elements of R by acting on
their coefficient vectors lifted to Z

N .

Choosing Parameters for NTRUEncrypt 9

of coefficients not in {−1, 0, 1} in product form polynomials leads to a large
increase in the relative size of the projected set.

In either case we assume that it is sufficient for the adversary to search for
trinary vectors, and that they may limit their search to a projection of TN (d, e)
for some (d, e). When targeting g we have d = dg +1, e = dg, and when targeting
f we have that both d and e are approximately 2d1d2+d3. Clearly when d = e =
N/3, and N � K, we should expect that the projection of a uniform random
element of TN (d, e) onto K coordinates will look like a uniform random element
of TK . For such parameters, the size of the set that must be enumerated in the
meet-in-the-middle stage is ≈ 3K/2.

For d �= N/3, or for large K, not all trinary sequences are equally likely, and
the adversary may choose to target a small set of high probability sequences.
Consequently we must estimate the size of the set of elements that are typical
under the projection. Fix N , K, Π, d, and e and let S = TN (d, e). Let p : TK →
R be the probability mass function on TK induced by sampling an element
uniformly at random from S and projecting its coefficient vector onto the set of
K coordinates fixed by Π. We will estimate the size of the search space in the
hybrid attack as, roughly, 2H(p), where H(p) is the Shannon entropy of p.

Let SΠ(a, b) be the subset of S consisting of vectors, v, such that vΠ has
exactly a coefficients equal to +1 and b coefficients equal to −1. By the symmetry
of S under coordinate permutations we have that p(vΠ) = p(v′Π) for all pairs
v, v′ ∈ SΠ(a, b). We choose a fixed representative of each type: va,b = vΠ for
some v ∈ SΠ(a, b), and write

p(va,b) =
1

(
K
a

)(
K−a

b

)
|SΠ(a, b)|

|S| =

(
N−K
d−a

)(
N−K−d+a

d−b

)

(
N
d

)(
N−d

d

) .

As there are exactly
(
K
a

)(
K−a

b

)

distinct choices for va,b this gives us:

H(p) = −
∑

v∈TK

p(v) log2 p(v) = −
∑

0≤a,b≤d

(
K

a

)(
K − a

b

)

p(va,b) log2 p(va,b).

(4)
The size of the search space is further decreased by a factor of N since xi ∗ g

is likely to be a distinct target for each i ∈ [0, N − 1]. Hence in order to resist
the hybrid meet-in-the-middle attack we should ensure

1
2
(H(p) − log2(N)) ≥ λ.

The only variable not fixed by the parameter set itself in Eq. 4 is K. In order to
fix K we must consider the cost of lattice reduction.

The block to be reduced is of size (r2 − r1) × (r2 − r1) where r2 = 2N − K
and r1 = λ. Recall that s = N − (r1 + r2)/2, and N1 = (r2 − r1)/2. Having
fixed these parameters we can use Eq. 3 to determine the strength of the lattice
reduction needed to ensure that αr2 is sufficiently large to permit recovery of a
trinary vector. In particular, we need αr2 = N1+s

2N1
−2N1 logq(δ) ≥ logq(2), which

10 J. Hoffstein et al.

implies that

log2(δ) ≤ N1 + s

4N2
1

log2(q) − 1
2N1

. (5)

Translating the required root Hermite factor, δ, into a concrete bit-security
estimate is notoriously difficult. However there seems to be widespread consensus
on the values that are currently out of reach for common security parameters.
As such one might use the following step function as a first approximation:

δ∗(λ) =

⎧

⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

1.009 if λ ≤ 60
1.008 if 60 < λ ≤ 80
1.007 if 80 < λ ≤ 128
1.005 if 128 < λ ≤ 256
1 otherwise.

A more refined approach involving a BKZ simulator, from [4], is used in Sect. 8.1.
Rewriting Eq. 5 in terms of N , q, r1 and K we define:

log2(η(N, q, r1, K)) =
(N − r1) log2(q)

4N2 − 4N (K + r1) + (K2 + 2r1K + r21)
− 1

2N − (K + r1)
.

Conclusion: A parameter set resists hybrid meet-in-the-middle attacks on pri-
vate keys if Eq. 4 is satisfied and

1 < η(N, q, r1,K) ≤ δ∗(r1). (6)

5 Rejecting Sparse (and Dense) Message Representatives

The parameter sets in this paper specify the exact number of 1’s and −1’s in
each of r1, r2, r3, which reveals the quantity r(1), that is, the polynomial r
evaluated at 1. As an encrypted message has the form e = pr ∗ h + m, the value
m(1) modulo q is revealed by the known quantities r(1), e(1), h(1). The value
m(1) in turn reveals the difference between the number of 1’s and the number
of −1’s in the message representative.

We assume the message representative is uniformly distributed over TN . The
expected value of m(1) is zero, but for large |m(1)|, the size of the search space for
m decreases, making a meet in the middle search for (r,m) easier. We assume
that the adversary observes a very large number of messages and can freely
condition their attack on the value of m(1) regardless of the probability that a
uniform random message representative takes that value.

In addition, we forbid the number of +1s, −1s, or 0s to be less than a given
parameter, dm. The choice of dm depends primarily affects resistance against
hybrid combinatorial attacks, but dm also has an impact on decryption failure
probability, as will be discussed in Sect. 6.

The calculation for determining resistance against hybrid combinatorial
attacks is very similar to that leading up to Eq. 4, but there are two key differ-
ences. First, in Sect. 4 we were primarily concerned with validating the security

Choosing Parameters for NTRUEncrypt 11

of the obvious choice dg = �N/3	. Here we will need to search for dm. Second,
having fixed dm we need to condition the distribution of projected elements on
the value of m(1).

The search space for dm can be constrained by imposing an arbitrary upper
bound on the probability of a failure. Such a failure is roughly as expensive as a
full encryption, so dm should be chosen to ensure that failures are rare.

Let I(dm) = {(i, j) : dm ≤ i < (N − 2dm), dm ≤ j < (N − dm − i)}. We will
only consider dm satisfying:

2−10 ≥ 1 − 3−N

⎛

⎝
∑

(i,j)∈I(dm)

(
N

i

)(
N − i

j

)
⎞

⎠

Let K be the value derived in Sect. 4. Fix Π and let S(e1, e2; a, b) be the set
of projections of elements of T (e1, e2) with a ones and b minus ones. Let M be
the subset of TN satisfying the dm constraint. Let p : TK × Z × Z → R be the
probability mass function given by

p(v, e1, e2) = Probm←$M (mΠ = v and m ∈ TN (e1, e2)) ,

i.e. p(v, e1, e2) is the probability that an m sampled uniformly from M has e1
ones, e2 minus ones, and is equal to v under projection. If the information leakage
from m(1) determined e1 and e2 then we could use essentially the same analysis
as Sect. 4 and our security estimate would be

1
2

min
(e1,e2)∈I(dm)

H(pdm
|e1, e2).

However the adversary only learns m(1) = e1 − e2, so we will account for their
uncertainty about whether m ∈ T (e1, e2) given m(1) = e1 − e2.

The marginal distribution on e1 and e2 conditioned on the event m(1) = y is

q(e1, e2|m(1) = y) =
∑

v∈TK

p(v, e1, e2|m(1) = y)

=
(

N

e1

)(
N − e1

e2

)

⎛

⎜
⎜
⎝

∑

i−j=y
(i,j)∈I(dm)

(
N

i

)(
N − i

j

)

⎞

⎟
⎟
⎠

−1

.

Conclusion: As such we will consider a parameter set secure against hybrid
meet-in-the-middle attacks on messages provided that:

λ ≤ min
y

min
e1−e2=y

(e1,e2)∈I(dm)

1
2
H(p|e1, e2) − log2 q(e1, e2|m(1) = y). (7)

Evaluating this expression is considerably simplified by noting that local minima
will be found at the extremal points: |e1 − e2| = N − 3dm and e1 = e2 ≈ N/3.

Note that unlike the estimate in Sect. 4 we do not include a − log2(N) term
to account for rotations of m.

12 J. Hoffstein et al.

6 Estimating the Probability of Decryption Failure

As remarked earlier, in order for decryption to succeed the coefficients of

a = p ∗ (r ∗ g + m ∗ F) + m

must have absolute value less than q/2.
Assuming p ∈ Z, and trinary g and m, the triangle inequality yields:

‖a‖∞ ≤ p (‖r‖1‖g‖∞ + ‖F‖1‖m‖∞) + 1 = p (‖r‖1 + ‖F‖1) + 1.

Thus with product form r and F decryption failures can be avoided entirely by
ensuring (q − 2)/2p > 8d1d2 + 4d3. However, since ciphertext expansion scales
roughly as N log2(q), it can be advantageous to consider probabilistic bounds as
well. The probability

Prob (a given coefficient of r ∗ g + m ∗ F has absolute value ≥ c)

can be analyzed rather well by an application of the central limit theorem. This
was done for the case of trinary r, g,m, F in [9]. Here we provide a modified
analysis for the case where the polynomials r and F take a product form. In
particular, we assume that r = r1 ∗ r2 + r3, F = F1 ∗ F2 + F3, where each ri

and Fi has exactly di coefficients equal to 1, di coefficients equal to −1, and the
remainder equal to 0.

Let Xk denote a coefficient of r ∗ g + m ∗ F . The spaces from which r and m
are drawn are invariant under permutations of indices, so the probability that
|Xk| > c does not depend on the choice of k.4 Note that Xk has the form

Xk = (r1 ∗ r2 ∗ g)k + (r3 ∗ g)k + (F1 ∗ F2 ∗ m)k + (F3 ∗ m)k,

and each term in the sum is itself a sum of either 4d1d2 or 2d3 (not necessarily dis-
tinct) coefficients of g or m. For instance, (r1∗r2∗g)k =

∑

i,j (r1)i(r2)j(g)(k−i−j)

and only the 4d1d2 pairs of indices corresponding to non-zero coefficients of r1
and r2 contribute to the sum. We can think of each index pair as selecting a sign
ε(i) and an index a(i) and rewrite the sum as (r1 ∗ r2 ∗ g)k =

∑4d1d2
i=1 ε(i)(g)a(i).

While the terms in this sum are not formally independent (since a may have
repeated indices, and g has a prescribed number of non-zero coefficients) exten-
sive experiments show that the variance of (r1 ∗r2 ∗g)k is still well approximated
by treating (g)a(i) as a random coefficient of g, i.e. as taking a non-zero value
with probability (2dg + 1)/N :

E
[

(r1 ∗ r2 ∗ g)2k
]

≈
4d1d2∑

i=1

E
[

(ε(i)(g)a(i))2
]

=
4d1d2∑

i=1

E

[

(g)2a(i)
]

= 4d1d2 · 2dg + 1
N

Nearly identical arguments can be applied to compute the variances of the
other terms of Eq. 6, although some care must be taken with the terms involv-
ing m. While an honest party will choose m uniformly from the set of trinary
4 The Xk for different k have the same distribution, but they are not completely

independent. However, they are so weakly correlated as to not affect our analysis.

Choosing Parameters for NTRUEncrypt 13

polynomials, m could be chosen adversarily to maximize its Hamming weight and
hence the probability of a decryption failure. Due to the dm constraint (Sect. 5),
the number of non-zero coefficients of m cannot exceed N − dm. As such we
model the coefficients of m as taking ±1 each with probability (1 − dm/N) and
0 with probability dm/N .

With these considerations the variance of (r1∗r2∗g)k+(r3∗g)k is found to be
σ2
1 = (4d1d2 +2d3) · 2dg+1

N , and the variance of (F1 ∗F2 ∗m)k +(F3 ∗m)k is found
to be σ2

2 = (4d1d2 + 2d3) · (1 − dm

N). Both terms are modeled as sums of i.i.d.
random variables, and the di are chosen such that 4d1d2 + 2d3 ≈ 2N/3, so for
sufficiently large N the central limit theorem suggests that each term will have
a normal distribution. Finally Xk can be expected to be distributed according
to the convolution of these two normal distributions, which itself is a normal
distribution with variance

σ2 = σ2
1 + σ2

2 = (4d1d2 + 2d3) · N − dm + 2dg + 1
N

.

The probability that a normally distributed random variable with mean 0
and standard deviation σ exceeds c in absolute value is given by the complemen-
tary error function, specifically erfc(c/(

√
2σ)). Applying a union bound, the

probability that any of the N coefficients of r ∗ g + m ∗ f is greater than c is
bounded above by N · erfc(c/(

√
2σ)).

Conclusion: To have negligible probability of decryption failure with respect
to the security parameter, λ, we require

N · erfc((q − 2)/(2
√

2 · p · σ)) < 2−λ (8)

where σ = σ(N, d1, d2, d3, dg, dm) as in Eq. 6.

7 Product Form Combinatorial Strength

The search space for a triple of polynomials F1, F2, F3 where each polynomial
Fi has di 1’s and di −1’s is of size:

|PN (d1, d2, d3)| =
(

N

d1

)(
N − d1

d1

)(
N

d2

)(
N − d2

d2

)(
N

d3

)(
N − d3

d3

)

.

Thus a purely combinatorial meet-in-the-middle search on product form keys can
be performed in time and space O(

√

|PN (d1, d2, d3)| /N), where we have divided
by N to account for the fact that rotations of a given triple are equivalent.

Finally, one could construct a 3N dimensional lattice attack by consid-
ering the lattice generated by linear combinations of the vectors (1, 0, f1 ∗
h), (0, 1, h), (0, 0, q), where each entry corresponds to N entries in the lattice.
The vector (f2, f3, g) will be a very short vector, but the increase of the dimen-
sion of the lattice by N , without any corresponding increase in the determinant
of the lattice, leads to a considerably harder lattice reduction problem. As this
attack also requires a correct guess of f1 we will not consider it further.

14 J. Hoffstein et al.

8 Explicit Algorithm for Computing Parameters

Algorithm 1 determines the smallest recommended N that allows for k bit secu-
rity. Additional details, such as recommendations on how to efficiently perform
the search in Line 16, may be found in our implementation available at [1].

8.1 Sample Parameter Generation

We will ignore the implicit outer loop over security parameters and consider the
case of N = 401 starting from Line 3.

Our recommendations for the key structure suggests taking dg = 134, d1 = 8,
d2 = 8, d3 = 6. Taking dm = 102 satisfies Eq. 5 with a probability of 2−10.4 of
rejecting a message representative due to its coefficient sum. A direct meet-in-
the-middle attack on the product form key space will involve testing approxi-
mately 2145 candidates. As this is an upper bound on the security of the parame-
ter set we will ensure that our decryption failure probability is less than 2−145.
This implores us to take q = 2048, for which there is, by Eq. 8, a decryption
failure probability of 2−217.

In order to finish the parameter derivation we need a tighter estimate on its
security. It may be significantly less than 145, in which case we may be able to
reduce q.

We estimate the security of the parameter set by minimizing the adversary’s
expected cost over choices of the hybrid attack parameter K. Equation 4 spec-
ifies, for each K, the root Hermite factor, δ, that must be reached during the
lattice reduction phase of the hybrid attack in order for the combinatorial stage
to be successful. We use the BKZ-2.0 simulator of [4] to determine the blocksize
and number of rounds of BKZ that will be required to reach root Hermite factor.

To turn the blocksize and iteration count into a concrete security estimate
we need estimates on the number of nodes visited per call to the enumeration
subroutine of BKZ. Table 2 summarizes upper bounds given by Chen and Nguyen
in [4] and in the full version of the same paper [5]. The estimates of the full version
are significantly lower than the original, and have perhaps not recieved the same
scrutiny. In what follows we will consider the implications of both estimates.

Table 2. Upper bounds on log2 number of nodes enumerated in one call to enumeration
subroutine of BKZ-2.0 as reported in the original and full versions of the paper.

β 100 110 120 130 140 150 160 170 180 190 200 210 220 230 240 250

LogNodes(β) [5] 39 44 49 54 60 66 72 78 84 96 99 105 111 120 127 134

To facilitate computer search for parameters we fit curves to the estimates in
Table 2, and following [4] we estimate the per-node cost, as 27 operations. The
resulting predictions for the cost of the lattice reduction stage, in terms of the

Choosing Parameters for NTRUEncrypt 15

Algorithm 1. NTRUEncrypt parameter generation
Input: Desired security level k.
1: Let nj be the jth value, ordered by magnitude, from the list of first 100 primes

> 100 for which ord(Z/NZ)∗(2) = (N − 1), i.e. (2) is inert.
2: Set j = 1.
3: Set N = nj .
4: Set dg =

⌊
N
3

⌉
.

5: Set d1 =

⌈
1
4

(√
1 + 8N

3
− 1

)⌉
{The next integer above the positive root of 2x2 +

x − N/3.}
6: Set d2 =

⌈(
N
3

− d1

)
/(2d1)

⌉
.

7: Set d3 = max
(⌈

d1
2

+ 1
⌉
,
⌈

N
3

− 2d1d2

⌉)
.

8: Set dm to be the largest value satisfying Eq. 5.
9: Set k1 =

⌊
1
2

log2 (|PN (d1, d2, d3)|/N)
⌋
. {Cost of direct combinatorial search gives

an upper bound on the security.}
10: if k1 < k then
11: Increment j.
12: Goto line 3.
13: end if
14: Set σ according to Eq. 6.

σ =

(
(4d1d2 + 2d3) · N − dm + 2dg + 1

N

)1/2

.

15: Set q to be the smallest power of 2 satisfying

N · erfc
(
(q − 2)/(6

√
2σ)
)

< 2−k1 .

{Estimate security}
16: Search for a hybrid parameter K that minimizes the maximum of the cost estimates

for hybrid attacks. Equation 4 gives the cost of the lattice reduction, and Eqs. 4
and 7 give the cost of combinatorial search for key- and message-recovery attacks
respectively. Let k2 be the corresponding security estimate.

17: if k > min(k1, k2) then
18: Increment j.
19: Go to Line 3.
20: end if
21: Let q′ = q/2.
22: if N · erfc ((q′ − 2)/(6

√
2σ)
)

< 2−k then
23: Set q = q′

24: Repeat security estimate (Line 16) with modulus q′ and set k2 equal to the
result.

25: Go to Line 17.
26: end if
Output: [N, q, d1, d2, d3, dg, dm].

16 J. Hoffstein et al.

blocksize, the dimension of the sublattice to be reduced, and number of rounds
are thus:

LogNodes(β) = 0.12081 · β log2(β) − 0.42860 · β

BKZCost(dim, β, rounds) = LogNodes(β) + log2(dimension · rounds) + 7.

Finally our security estimate requires a search over K to balance the cost of
lattice reduction against the cost of combinatorial search given by Eq. 4.

Fixing K = 154 the BKZ-2.0 simulator suggests that 10 rounds of BKZ-197
will achieve to the requisite δ = 1.0064. The BKZCost estimate suggets that this
reduction will require 2116 operations, matching the cost of 2116 given by Eq. 4
for the combinatorial search step.

We find that we cannot decrease q without violating the constraint on the
decryption failure probability, and we are done.

The parameter set we have just (re-)derived originally appeared in the EESS
#1 standard at the 112 bit security level. All four product-form parameter sets
from EESS #1 are reviewed in Table 3 with security estimates following the
above analysis. Note that while the algorithm in Sect. 8 rederives the N = 401
parameter set almost exactly (dg is 133 in EESS #1), this is not true for the
N = 593 and N = 743 parameter sets. In particular, all four of the published
parameter sets take q = 2048, and this does not lead to a formally negligible
probability of decryption failure for N = 593 or N = 743. Note also that the
number of prime ideals lying above (2) is more than recommended for N = 439
and N = 593. Table 3 presents security estimates for the standardized parame-
ters rather than those that would be output by the algorithm of Sect. 8.

Table 3.

EESS #1 Parameter sets and security estimates

Original N q (d1, d2, d3, dg, dm) Hybrid attack parameters Product form log2 dec.

security est Dim β Rounds K Cost search cost fail prob

112 401 2048 (8, 8, 6, 133, 101) 532 197 10 154 116 145 -217

128 439 2048 (9, 8, 5, 146, 112) 571 221 10 174 133 147 -195

192 593 2048 (10, 10, 8, 197, 158) 732 316 8 261 201 193 -139

256 743 2048 (11, 11, 15, 247, 204) 880 407 8 350 272 256 -112

9 New Parameters

The parameter derivations above do not take quantum adversaries into consider-
ation. The time/space tradeoff in the hybrid attack can be replaced (trivially) by
a Grover search to achieve the same asymptotic time complexity as the hybrid
attack with a space complexity that is polynomial in N . One may expect that a
quantum time/space tradeoff could do even better, however this seems unlikely
given the failure of quantum time/space tradeoffs against collision problems in

Choosing Parameters for NTRUEncrypt 17

Table 4.

Post-quantum parameter sets and security estimates

Classical Quantum N q (d1, d2, d3, dg , dm) Hybrid attack parameters Product form log2 dec.

security est security est Dim β Rounds K Cost search cost fail prob

128 128 443 2048 (9, 8, 5, 148, 115) 575 222 11 177 133 147 -196

192 128 587 2048 (10, 10, 8, 196, 157) 723 311 9 258 197 193 -139

256 128 743 2048 (11, 11, 15, 247, 204) 880 407 8 350 272 256 -112

other domains [3]. Several proposals in this direction have been made, such as
[7], however these assume unrealistic models of quantum computation. For now,
it seems that the best quantum attack on NTRUEncrypt is the hybrid attack
with meet-in-the-middle search replaced by Grover search in the Kth projected
lattice.

Fluhrer has noted that there are weaknesses in the EESS #1 parameter sets
assuming worst-case cost models for quantum computation [7]. In particular, if
one Grover iteration is assigned cost equivalent to one classical operation, such as
a multiplication in R, then attacks on the hash functions used in key generation
and encryption can break the EESS #1 parameter sets.

Developing a realistic quantum cost model is outside the scope of this work.
However we can easily provide parameter sets that are secure in Fluhrer’s model.
Since this model is in some sense a worst-case for quantum computation (it
assigns the smallest justifiable cost to quantum operations) the quantum secu-
rity estimates can be assumed to be quite conservative. In addition to using the
parameters in Table 4 one must ensure that pseudorandom polynomial genera-
tion functions are instantiated with SHA-256, and that the message is concate-
nated with a random string b that is at least 256 bits. One should also ensure
that any deterministic random bit generators used in key generation or encryp-
tion are instantiated with at least 256 bits of entropy from a secure random
source.

The parameter sets for N = 443 and N = 587 in Table 4 are new, N = 743
is the same as ees743ep1 from EESS #1.

References

1. NTRU OpenSource Project.online. https://github.com/NTRUOpenSource
Project/ntru-crypto

2. 2015. https://www.ntru.com/ntru-challenge/
3. Bernstein, D.J.: Cost analysis of hash collisions: will quantum computers make-

SHARCS obsolete? (2009). http://cr.yp.to/papers.html#collisioncost
4. Chen, Y., Nguyen, P.Q.: BKZ 2.0: better lattice security estimates. In: Lee,

D.H., Wang, X. (eds.) ASIACRYPT 2011. LNCS, vol. 7073, pp. 1–20. Springer,
Heidelberg (2011). doi:10.1007/978-3-642-25385-0 1

5. Chen, Y., Nguyen, P.Q.: BKZ 2.0: Better lattice security estimates (full version)
(2011). http://www.di.ens.fr/∼ychen/research/Full BKZ.pdf

https://github.com/NTRUOpenSourceProject/ntru-crypto
https://github.com/NTRUOpenSourceProject/ntru-crypto
https://www.ntru.com/ntru-challenge/
http://cr.yp.to/papers.html#collisioncost
http://dx.doi.org/10.1007/978-3-642-25385-0_1
http://www.di.ens.fr/~ychen/research/Full_BKZ.pdf

18 J. Hoffstein et al.

6. Ducas, L., Durmus, A., Lepoint, T., Lyubashevsky, V.: Lattice signatures and
bimodal Gaussians. In: Canetti, R., Garay, J.A. (eds.) CRYPTO 2013. LNCS, vol.
8042, pp. 40–56. Springer, Heidelberg (2013). doi:10.1007/978-3-642-40041-4 3

7. Fluhrer, S.R.: Quantum cryptanalysis of NTRU. IACR Cryptology ePrint Archive,
2015:676 (2015)

8. Gama, N., Nguyen, P.Q.: Predicting lattice reduction. In: Smart, N. (ed.) EURO-
CRYPT 2008. LNCS, vol. 4965, pp. 31–51. Springer, Heidelberg (2008). doi:10.
1007/978-3-540-78967-3 3

9. Hirschhorn, P.S., Hoffstein, J., Howgrave-Graham, N., Whyte, W.: Choosing
NTRUEncrypt parameters in light of combined lattice reduction and MITM
approaches. In: Abdalla, M., Pointcheval, D., Fouque, P.-A., Vergnaud, D. (eds.)
ACNS 2009. LNCS, vol. 5536, pp. 437–455. Springer, Heidelberg (2009). doi:10.
1007/978-3-642-01957-9 27

10. Hoffstein, J., Pipher, J., Schanck, J.M., Silverman, J.H., Whyte, W., Zhang, Z.:
Choosing Parameters for NTRUEncrypt (full version). IACR Cryptology ePrint
Archive 2015:708 (2015)

11. Hoffstein, J., Pipher, J., Silverman, J.H.: NTRU: a ring-based public key cryptosys-
tem. In: Buhler, J.P. (ed.) ANTS 1998. LNCS, vol. 1423, pp. 267–288. Springer,
Heidelberg (1998). doi:10.1007/BFb0054868

12. Hoffstein, J., Silverman, J.H.: Optimizations for NTRU (2000)
13. Hoffstein, J., Silverman, J.H.: Random small hamming weight products with appli-

cations to cryptography. Discrete Appl. Math. 130(1), 37–49 (2003)
14. Hoffstein, J., Silverman, J.H., Whyte, W.: Provable Probability Bounds for NTRU-

Encrypt Convolution (2007). http://www.ntru.com
15. Howgrave-Graham, N.: A hybrid lattice-reduction and meet-in-the-middle attack

against NTRU. In: Menezes, A. (ed.) CRYPTO 2007. LNCS, vol. 4622, pp. 150–
169. Springer, Heidelberg (2007). doi:10.1007/978-3-540-74143-5 9

16. Howgrave-Graham, N., Silverman, J.H., Whyte, W.: Choosing parameter sets
for NTRUEncrypt with NAEP and SVES-3. In: Menezes, A. (ed.) CT-RSA
2005. LNCS, vol. 3376, pp. 118–135. Springer, Heidelberg (2005). doi:10.1007/
978-3-540-30574-3 10

17. Stehlé, D., Steinfeld, R.: Making NTRU as secure as worst-case problems over ideal
lattices. In: Paterson, K.G. (ed.) EUROCRYPT 2011. LNCS, vol. 6632, pp. 27–47.
Springer, Heidelberg (2011). doi:10.1007/978-3-642-20465-4 4

http://dx.doi.org/10.1007/978-3-642-40041-4_3
http://dx.doi.org/10.1007/978-3-540-78967-3_3
http://dx.doi.org/10.1007/978-3-540-78967-3_3
http://dx.doi.org/10.1007/978-3-642-01957-9_27
http://dx.doi.org/10.1007/978-3-642-01957-9_27
http://dx.doi.org/10.1007/BFb0054868
http://www.ntru.com
http://dx.doi.org/10.1007/978-3-540-74143-5_9
http://dx.doi.org/10.1007/978-3-540-30574-3_10
http://dx.doi.org/10.1007/978-3-540-30574-3_10
http://dx.doi.org/10.1007/978-3-642-20465-4_4

	Choosing Parameters for NTRUEncrypt
	1 Introduction and Notation
	2 General Considerations
	2.1 Ring Parameters
	2.2 Private Key, Blinding Polynomial, and Message Parameters

	3 Review of the Hybrid Attack
	4 Meet in the Middle Search
	5 Rejecting Sparse (and Dense) Message Representatives
	6 Estimating the Probability of Decryption Failure
	7 Product Form Combinatorial Strength
	8 Explicit Algorithm for Computing Parameters
	8.1 Sample Parameter Generation

	9 New Parameters
	References

