Quantum speedups for lattice sieves are tenuous at best

ePrint: 2019/1161

Martin R. Albrecht, Vlad Gheorghiu, Eamonn W. Postlethwaite, John M. Schanck

October 18, 2019

Not this talk:

The security of Kyber768.

Not this talk:
The security of Kyber768.

Not this talk:
The security of Kyber768.
The lattice security of Kyber768.

Not this talk:
The security of Kyber768.
The lattice security of Kyber768.
The cost of BKZ-k for \mathbf{k} that determines the lattice security of Kyber768.

Not this talk:
The security of Kyber768.
The lattice security of Kyber768.
The cost of BKZ-k for \mathbf{k} that determines the lattice security of Kyber768.
The core-SVP estimate for the lattice security of Kyber768.

Not this talk:
The security of Kyber768.
The lattice security of Kyber768.
The cost of BKZ-k for \mathbf{k} that determines the lattice security of Kyber768.
The core-SVP estimate for the lattice security of Kyber768.
The cost of the sieving routine inside the SVP solver used in the core-SVP estimate for the lattice security of Kyber768.

Not this talk:
The security of Kyber768.
The lattice security of Kyber768.
The cost of BKZ-k for \mathbf{k} that determines the lattice security of Kyber768.
The core-SVP estimate for the lattice security of Kyber768.
The cost of the sieving routine inside the SVP solver used in the core-SVP estimate for the lattice security of Kyber768.
The heuristic cost of the sieving routine inside the SVP solver used in the core-SVP estimate for the lattice security of Kyber768.

Not this talk:
The security of Kyber768.
The lattice security of Kyber768.
The cost of BKZ-k for \mathbf{k} that determines the lattice security of Kyber768.
The core-SVP estimate for the lattice security of Kyber768.
The cost of the sieving routine inside the SVP solver used in the core-SVP estimate for the lattice security of Kyber768.
The heuristic cost of the sieving routine inside the SVP solver used in the core-SVP estimate for the lattice security of Kyber768.
The heuristic cost of one call to the sieving routine inside the SVP solver used in the core-SVP estimate for the lattice security of Kyber768.

Not this talk:
The security of Kyber768.
The lattice security of Kyber768.
The cost of BKZ-k for \mathbf{k} that determines the lattice security of Kyber768.
The core-SVP estimate for the lattice security of Kyber768.
The cost of the sieving routine inside the SVP solver used in the core-SVP estimate for the lattice security of Kyber768.
The heuristic cost of the sieving routine inside the SVP solver used in the core-SVP estimate for the lattice security of Kyber768.
The heuristic cost of one call to the sieving routine inside the SVP solver used in the core-SVP estimate for the lattice security of Kyber768.

This talk:

The heuristic cost—classical and quantum—of near neighbor search on spheres in dimension <1000.

Cost estimates and numerically optimized parameters for the heuristic NNS algorithms underlying:

- Nguyen-Vidick sieve
- bgj1, i.e. Becker-Gama-Joux sieve w/o recursion
- The Becker-Ducas-Gama-Laarhoven sieve

Near neighbor search

A near neighbor search algorithm takes a list of N points, pre-processes it to make neighbor queries more efficient.

I want to find points that are close to u in angular distance.

- Angular distance: $\theta(u, v)=\arccos \langle u, v\rangle$.

I want to do this for many different u.

Near neighbor search

A near neighbor search algorithm takes a list of N points, pre-processes it to make neighbor queries more efficient.

I want to find points that are close to u in angular distance.

- Angular distance: $\theta(u, v)=\arccos \langle u, v\rangle$.

I want to do this for many different u.

List-size preserving parameterization

Special case:

- Input consists of N uniformly random points.
- N large enough to ensure that there are N neighboring pairs.

Write $C_{d}(\theta)$ for the spherical measure of

$$
\operatorname{Cap}(u, \theta)=\{v: \theta(u, v) \leq \theta\} .
$$

Then

equiv.

List-size preserving parameterization

Special case:

- Input consists of N uniformly random points.
- N large enough to ensure that there are N neighboring pairs.

Write $C_{d}(\theta)$ for the spherical measure of

$$
\operatorname{Cap}(u, \theta)=\{v: \theta(u, v) \leq \theta\} .
$$

Then

$$
N \approx\binom{N}{2} C_{d}(\theta)
$$

equiv.

$$
N \approx 2 / C_{d}(\theta)
$$

Algorithm: AllPairs / Nguyen-Vidick sieve

Input: list L of size N.

Search:

1. Number the points $v_{1}, v_{2}, v_{3}, \ldots, v_{N}$
2. Test $\theta\left(v_{i}, v_{j}\right) \leq \theta$ for $1 \leq i<j \leq N$

Cost of AllPairs / Nguyen-Vidick sieve

 List-size preserving caseClassical search
Nguyen-Vidick (2008): $\left(1 / C_{d}(\theta)\right)^{2+o(1)}$
$\left(1 / C_{d}(\pi / 3)\right)^{2+o(1)}=2^{c(d)}$ where $c(d)=(0.4150 \ldots+o(1)) d$

Quantum search
Laarhoven-Mosca-van de Pol (2014): $\left(1 / C_{d}(\theta)\right)^{1.5+o(1)}$
$\left(1 / C_{d}(\pi / 3)\right)^{1.5+o(1)}=2^{c(d)}$ where $c(d)=(0.3112 \ldots+o(1)) d$

Cost of AllPairs / Nguyen-Vidick sieve

 List-size preserving case
Classical search

Nguyen-Vidick (2008): $\left(1 / C_{d}(\theta)\right)^{2+o(1)}$

$$
\left(1 / C_{d}(\pi / 3)\right)^{2+o(1)}=2^{c(d)} \text { where } c(d)=(0.4150 \ldots+o(1)) d
$$

Quantum search

Laarhoven-Mosca-van de Pol (2014): $\left(1 / C_{d}(\theta)\right)^{1.5+o(1)}$

$$
\left(1 / C_{d}(\pi / 3)\right)^{1.5+o(1)}=2^{c(d)} \text { where } c(d)=(0.3112 \ldots+o(1)) d
$$

Why care about the polynomial terms?

- Quantum and classical variants have different polynomial factors.
- Quantum advantage is small. Even smaller in more advanced algorithms.
- Polynomial factors are significant in low dimension.

Why care about the polynomial terms?

- Quantum and classical variants have different polynomial factors.
- Quantum advantage is small. Even smaller in more advanced algorithms.
- Polynomial factors are significant in low dimension.

Why care about the polynomial terms?

- Quantum and classical variants have different polynomial factors.
- Quantum advantage is small. Even smaller in more advanced algorithms.
- Polynomial factors are significant in low dimension.

Why care about the polynomial terms?

- Quantum and classical variants have different polynomial factors.
- Quantum advantage is small. Even smaller in more advanced algorithms.
- Polynomial factors are significant in low dimension.

What are the polynomial factors?

- Volume estimates.
- Cost of testing $\theta(u, v)$.

What are the polynomial factors?

- Volume estimates.
- Cost of testing $\theta(u, v)$.

Search predicates

- Search predicate on \mathcal{X} :

$$
f: \mathcal{X} \rightarrow\{0,1\}
$$

- Kernel of f :

$$
\begin{gathered}
\operatorname{Ker}(f)=\{x: f(x)=0\} \\
|f|=|\operatorname{Ker}(f)|
\end{gathered}
$$

- Predicate $f \cap g$ defined by:

$$
\operatorname{Ker}(f \cap g)=\operatorname{Ker}(f) \cap \operatorname{Ker}(g)
$$

Exhaustive search

$g(1) \quad g(2) \quad g(3) \quad g(4) \quad g(5) \quad \ldots \quad \ldots$

Exhaustive search

1
$g(2) \quad g(3) \quad g(4) \quad g(5)$

Exhaustive search

$$
\begin{array}{lllll}
1 & 1 & g(3) & g(4) & g(5)
\end{array}
$$

Exhaustive search

$$
\begin{array}{lllll}
1 & 1 & 1 & g(4) & g(5)
\end{array}
$$

Exhaustive search

$$
\begin{array}{lllll}
1 & 1 & 1 & 1 & g(5)
\end{array}
$$

Exhaustive search

$$
\begin{array}{llllll}
1 & 1 & 1 & 1 & 1 & \ldots
\end{array}
$$

Exhaustive search

$$
\begin{array}{lllllll}
1 & 1 & 1 & 1 & 1 & \ldots & g(57)
\end{array}
$$

Exhaustive search

$$
\begin{array}{llllll}
1 & 1 & 1 & 1 & 1 & \ldots \tag{0}
\end{array}
$$

Filtered search

$f(1)$	$f(2)$	$f(3)$	$f(4)$	$f(5)$	\ldots	$f(57)$
$g(1)$	$g(2)$	$g(3)$	$g(4)$	$g(5)$	\ldots	$g(57)$

Filtered search

$$
\begin{array}{lllllll}
1 & 1 & f(3) & f(4) & f(5) & \ldots & f(57) \\
g(1) & g(2) & g(3) & g(4) & g(5) & \ldots & g(57)
\end{array}
$$

Filtered search

$$
\begin{array}{lllllll}
1 & 1 & 1 & 1 & f(5) & \ldots & f(57) \\
g(1) & g(2) & g(3) & g(4) & g(5) & \ldots & g(57)
\end{array}
$$

Filtered search

$$
\begin{array}{lllllll}
1 & 1 & 1 & 1 & 1 & \ldots & f(57) \\
g(1) & g(2) & g(3) & g(4) & g(5) & \ldots & g(57)
\end{array}
$$

Filtered search

$$
\begin{array}{lllllll}
1 & 1 & 1 & 1 & 1 & \cdots & 0 \\
g(1) & g(2) & g(3) & g(4) & g(5) & \cdots & g(57)
\end{array}
$$

Filtered search

$$
\begin{array}{lllllll}
1 & 1 & 1 & 1 & 1 & \ldots & 0 \\
g(1) & g(2) & g(3) & g(4) & g(5) & \cdots & 0
\end{array}
$$

Quantum search

For any predicate g and unitary \mathbf{A}, define the amplification operator:

$$
\mathbf{G}(\mathbf{A}, g):=\mathbf{A R}_{0} \mathbf{A}^{\dagger} \mathbf{R}_{g}
$$

where

$$
\begin{aligned}
& \mathbf{R}_{0}|x\rangle=\left\{\begin{aligned}
-|x\rangle & \text { if } x=0 \\
|x\rangle & \text { otherwise }
\end{aligned}\right. \\
& \mathbf{R}_{g}|x\rangle=(-1)^{g(x)}|x\rangle .
\end{aligned}
$$

Quantum search

Suppose that measuring $\mathbf{A}|0\rangle$ yields an element of $\operatorname{Ker}(g)$ with probability p.

Grover-Brassard-Høyer-Mosca-Tapp:

- Measuring
with $k \approx \sqrt{1 / p}$ yields a root of g w.p. ≈ 1.

Boyer-Brassard-Høyer-Tapp:

- ... even if p is not known.

Quantum search

Suppose that measuring $\mathbf{A}|0\rangle$ yields an element of $\operatorname{Ker}(g)$ with probability p.

Grover-Brassard-Høyer-Mosca-Tapp:

- Measuring

$$
\mathbf{G}(\mathbf{A}, g)^{k} \mathbf{A}|0\rangle
$$

with $k \approx \sqrt{1 / p}$ yields a root of g w.p. $\approx 1 \ldots$

Boyer-Brassard-Høyer-Tapp:

- ... even if p is not known.

Quantum search

Suppose that measuring $\mathbf{A}|0\rangle$ yields an element of $\operatorname{Ker}(g)$ with probability p.

Grover-Brassard-Høyer-Mosca-Tapp:

- Measuring

$$
\mathbf{G}(\mathbf{A}, g)^{k} \mathbf{A}|0\rangle
$$

with $k \approx \sqrt{1 / p}$ yields a root of g w.p. $\approx 1 \ldots$

Boyer-Brassard-Høyer-Tapp:

- ... even if p is not known.

Filtered quantum search

Parameters m_{1} and m_{2}.

1. Sample j uniformly from $\left\{0, \ldots, m_{1}-1\right\}$
2. Sample k uniformly from $\left\{0, \ldots, m_{2}-1\right\}$
3. Define

$$
\begin{aligned}
& \mathbf{A}_{j}=\mathbf{G}(\mathbf{D}, f)^{j} \mathbf{D} \\
& \mathbf{B}_{k}=\mathbf{G}\left(\mathbf{A}_{j}, f \cap g\right)^{k}
\end{aligned}
$$

4. Prepare and measure the state:

$$
\mathbf{B}_{k} \mathbf{A}_{j}|0\rangle
$$

Cost of filtered quantum search

Suppose that we know $P / \gamma \leq|g| \leq \gamma P$.

Proposition
We can choose m_{1} and m_{2} such that FilteredQuantumSearch finds a root of
$f \cap g$ with probability at least $1 / 8$ and has a cost that is dominated by
(approximately)
$-\sim \frac{1}{2} \sqrt{N}$ times the cost of $G(g)$, or
$>\frac{4}{3} \sqrt{\gamma P}$ times the cost of $\mathbf{R}_{f \cap g}$.

Cost of filtered quantum search

Suppose that we know $P / \gamma \leq|g| \leq \gamma P$.

Proposition

We can choose m_{1} and m_{2} such that FilteredQuantumSearch finds a root of $f \cap g$ with probability at least $1 / 8$ and has a cost that is dominated by (approximately)

- $\gamma \frac{1}{2} \sqrt{N}$ times the cost of $\mathbf{G}(g)$, or
- $\frac{4}{3} \sqrt{\gamma P}$ times the cost of $\mathbf{R}_{f \cap g}$.

Cost of filtered quantum search

Suppose that we know $P / \gamma \leq|g| \leq \gamma P$.

Proposition

We can choose m_{1} and m_{2} such that FilteredQuantumSearch finds a root of $f \cap g$ with probability at least $1 / 8$ and has a cost that is dominated by (approximately)

- $\gamma \frac{1}{2} \sqrt{N}$ times the cost of $\mathbf{G}(g)$, or
- $\frac{4}{3} \sqrt{\gamma P}$ times the cost of $\mathbf{R}_{f \cap g}$.

Cost of filtered quantum search

Suppose that we know $P / \gamma \leq|g| \leq \gamma P$.

Idealized Proposition

We can choose m_{1} and m_{2} such that FilteredQuantumSearch finds a root of $f \cap g$ and has a cost that is dominated by

- $\frac{1}{2} \sqrt{N}$ times the cost of $\mathbf{G}(g)$, or
- $\frac{4}{3} \sqrt{P}$ times the cost of $\mathbf{R}_{f \cap g}$.

Algorithm: AllPairs / Nguyen-Vidick sieve

Input: list L of size N

1. Number the points $v_{1}, v_{2}, v_{3}, \ldots, v_{N}$
2. For $i=1, \ldots, N$
3. For $j=i+1, \ldots, N$
4. \quad Test $g_{i}\left(v_{j}\right)$ where $g_{i}\left(v_{j}\right)=\left[\theta\left(v_{i}, v_{j}\right)>\pi / 3\right]$.

Algorithm: AllPairs / Nguyen-Vidick sieve

Input: list L of size N

1. Number the points $v_{1}, v_{2}, v_{3}, \ldots, v_{N}$
2. For $i=1, \ldots, N$
3. For $j=i+1, \ldots, N$
4. If $\boldsymbol{f}_{\boldsymbol{i}}\left(\boldsymbol{v}_{\boldsymbol{j}}\right)$ then test $g_{i}\left(v_{j}\right)$ where $g_{i}\left(v_{j}\right)=\left[\theta\left(v_{i}, v_{j}\right)>\pi / 3\right]$.

Algorithm: AllPairs / Nguyen-Vidick sieve

Input: list L of size N

1. Number the points $v_{1}, v_{2}, v_{3}, \ldots, v_{N}$
2. For $i=1, \ldots, N$
3. For $j=i+1, \ldots, N$
4. If $\boldsymbol{f}_{\boldsymbol{i}}\left(\boldsymbol{v}_{\boldsymbol{j}}\right)$ then test $g_{i}\left(v_{j}\right)$ where $g_{i}\left(v_{j}\right)=\left[\theta\left(v_{i}, v_{j}\right)>\pi / 3\right]$.

What to use for f_{i} in a filtered search?

XOR + population count

Define a hash function family:

$$
\mathcal{H}=\{u \mapsto \operatorname{sgn}(\langle r, u\rangle): r \in \mathcal{S}\}
$$

XOR + population count

Fact: $\quad \operatorname{Pr}_{h \leftarrow \mathcal{H}}[h(u) \neq h(v)]=\frac{\theta(u, v)}{\pi}$.

Let $H_{n}(x)=\left(h_{1}(x), \ldots h_{n}(x)\right)$ for random $h_{i} \in \mathcal{H}$.

For large n, we have
$\frac{\text { HammingWTVight }\left(H_{n}(u) \oplus H_{n}(v)\right)}{n} \approx \frac{\theta(u, v)}{\pi}$

XOR + population count

Fact: $\quad \operatorname{Pr}_{h \leftarrow \mathcal{H}}[h(u) \neq h(v)]=\frac{\theta(u, v)}{\pi}$.

Let $H_{n}(x)=\left(h_{1}(x), \ldots h_{n}(x)\right)$ for random $h_{i} \in \mathcal{H}$.

For large n, we have
$\frac{\text { HammingWVeight }\left(H_{n}(u) \oplus H_{n}(v)\right)}{n} \approx \frac{\theta(u, v)}{\pi}$

XOR + population count

Fact:

$$
\underset{h \leftarrow \mathcal{H}}{\operatorname{Pr}}[h(u) \neq h(v)]=\frac{\theta(u, v)}{\pi} .
$$

Let $H_{n}(x)=\left(h_{1}(x), \ldots h_{n}(x)\right)$ for random $h_{i} \in \mathcal{H}$.

For large n, we have

$$
\frac{\operatorname{HammingWeight}\left(H_{n}(u) \oplus H_{n}(v)\right)}{n} \approx \frac{\theta(u, v)}{\pi}
$$

XOR + population count

Used as a filter in implementations of sieving algorithms:

- 2014 Fitzpatrick-Bischof-Buchmann-Dagdelen-Göpfert-Mariano-Yang
- 2018 Ducas
- 2019 Albrecht-Ducas-Herold-Kirshanova-Postlethwaite-Stevens

Earlier algorithmic use

- 1995 Goemans-Williamson
- 2002 Charikar

Algorithm: AllPairs / Nguyen-Vidick sieve

Input: list L of size N

Setup:

1. Fix H_{n}
2. Construct a table $\left(i, H_{n}\left(v_{i}\right)\right)$

Search:
For all i :

1. Load $H_{n}\left(v_{i}\right)$
2. For $j=i+1, \ldots, N$
3. Load $H_{n}\left(v_{j}\right)$
4. If $\operatorname{HammingWt}\left(H_{n}\left(v_{i}\right) \oplus H_{n}\left(v_{j}\right)\right) \leq k$
5. Test $\theta\left(v_{i}, v_{j}\right) \leq \theta$.

This work: New python/mpmath package

Calculates the circuit depth, width, gate count (etc.) for popcount and filtered quantum search subroutines.

Calculates the accuracy of random popcount filters given

- points uniformly distributed on sphere;
- points uniformly distributed in a cap of angle β.

Calculates the (normalized) spherical measure of

- caps, using ${ }_{2} F_{1}$ representation of $C_{d}(\theta)$
- intersections of caps, using an integral representation.

Error correction

Image: Fowler, Mariantoni, Martinis, Cleland. (2012)

Error correction

We consider the added cost of reading syndromes, but not processing them.
(Under the same physical assumptions as Gidney-Ekera (2019))

Algorithm: RandomBucketSearch / bgj1

Parameters: t, θ_{1} Input: list L of size N

Search:

1. Repeat t times:
2. Pick a random point f.
3. Run AllPairs on $L_{f}=L \cap \operatorname{Cap}\left(f, \theta_{1}\right)$.

Note: Optimal choice of t and θ_{1} is based on volume of the intersection of caps of angle θ_{1} with centers at distance $\pi / 3$.

Cost of RandomBucketSearch

List-size preserving case

Classical search
Albrecht-Ducas-Herold-Kirshanova-Postlethwaite-Stevens

$$
2^{c(d)} \text { where } c(d)=(0.3494 \ldots+o(1)) d
$$

Quantum search

$$
2^{c(d)} \text { where } c(d)=(0.3013 \ldots+o(1)) d
$$

Algorithm: ListDecodingSearch / BDGL

Parameters: $t, \theta_{1}, \theta_{2}$
Input: list L of size N
Setup:
Pick a set of t random points F Initialize t buckets $\left\{L_{f}: f \in F\right\}$

Fill:

1. For each v in L
2. insert v into L_{f} if $f \in \operatorname{Cap}\left(v, \theta_{2}\right)$

Query:

1. For each v in L
2. $\quad F_{i}=F \cap \operatorname{Cap}\left(v, \theta_{1}\right)$
3. Run AllPairs on $L_{F}=\coprod\left\{L_{f}: f \in F_{i}\right\}$.

Cost of ListDecodingSearch / BDGL

Classical search
Becker-Ducas-Gama-Laarhoven:

$$
2^{c(d)} \text { where } c(d)=(0.2924 \ldots+o(1)) d
$$

Quantum search
Laarhoven:

$$
2^{c(d)} \text { where } c(d)=(0.2652 \ldots+o(1)) d
$$

Barriers to a quantum speedup

qRAM

- Known constructions have some cost that grows like $N^{O(1)}$.
- qRAM computations are not necessarily "localizable".

Barriers to a quantum speedup

Error correction overhead

- Cost of processing syndromes
- Cost of state distillation
- Locality constraints introduced by code
- Probability of failure from logical errors

Barriers to a quantum speedup

Poor parallelization

Barriers to a quantum speedup

Cost underestimates

- "Idealized proposition":

$$
P / \gamma \leq|g| \leq \gamma P ; \quad \operatorname{Pr}[\text { success }] \geq 1 / 8
$$

- Use of $\mathbf{G}(\mathbf{H}, f)$.
"Run AllPairs on $L_{F}=\amalg\left\{B_{f}: f \in F_{i}\right\}$."

