
Quantum speedups for lattice sieves are tenuous at best
ePrint: 2019/1161

Martin R. Albrecht, Vlad Gheorghiu,
Eamonn W. Postlethwaite, John M. Schanck

October 18, 2019

Not this talk:
The security of Kyber768.

Not this talk:
The security of Kyber768.

Not this talk:
The security of Kyber768.
The lattice security of Kyber768.

Not this talk:
The security of Kyber768.
The lattice security of Kyber768.
The cost of BKZ-k for k that determines the lattice security of Kyber768.

Not this talk:
The security of Kyber768.
The lattice security of Kyber768.
The cost of BKZ-k for k that determines the lattice security of Kyber768.
The core-SVP estimate for the lattice security of Kyber768.

Not this talk:
The security of Kyber768.
The lattice security of Kyber768.
The cost of BKZ-k for k that determines the lattice security of Kyber768.
The core-SVP estimate for the lattice security of Kyber768.
The cost of the sieving routine inside the SVP solver used in the core-SVP estimate
for the lattice security of Kyber768.

Not this talk:
The security of Kyber768.
The lattice security of Kyber768.
The cost of BKZ-k for k that determines the lattice security of Kyber768.
The core-SVP estimate for the lattice security of Kyber768.
The cost of the sieving routine inside the SVP solver used in the core-SVP estimate
for the lattice security of Kyber768.
The heuristic cost of the sieving routine inside the SVP solver used in the core-SVP
estimate for the lattice security of Kyber768.

Not this talk:
The security of Kyber768.
The lattice security of Kyber768.
The cost of BKZ-k for k that determines the lattice security of Kyber768.
The core-SVP estimate for the lattice security of Kyber768.
The cost of the sieving routine inside the SVP solver used in the core-SVP estimate
for the lattice security of Kyber768.
The heuristic cost of the sieving routine inside the SVP solver used in the core-SVP
estimate for the lattice security of Kyber768.
The heuristic cost of one call to the sieving routine inside the SVP solver used in
the core-SVP estimate for the lattice security of Kyber768.

Not this talk:
The security of Kyber768.
The lattice security of Kyber768.
The cost of BKZ-k for k that determines the lattice security of Kyber768.
The core-SVP estimate for the lattice security of Kyber768.
The cost of the sieving routine inside the SVP solver used in the core-SVP estimate
for the lattice security of Kyber768.
The heuristic cost of the sieving routine inside the SVP solver used in the core-SVP
estimate for the lattice security of Kyber768.
The heuristic cost of one call to the sieving routine inside the SVP solver used in
the core-SVP estimate for the lattice security of Kyber768.

This talk:
The heuristic cost—classical and quantum—of near neighbor search on spheres in
dimension < 1000.

Cost estimates and numerically optimized parameters for the heuristic NNS
algorithms underlying:

I Nguyen–Vidick sieve

I bgj1, i.e. Becker–Gama–Joux sieve w/o recursion

I The Becker–Ducas–Gama–Laarhoven sieve

Near neighbor search

A near neighbor search algorithm takes a list of N points, pre-processes it to
make neighbor queries more efficient.

I want to find points that are close to u in angular distance.

I Angular distance: θ(u, v) = arccos〈u, v〉.
I want to do this for many different u.

Near neighbor search

A near neighbor search algorithm takes a list of N points, pre-processes it to
make neighbor queries more efficient.

I want to find points that are close to u in angular distance.

I Angular distance: θ(u, v) = arccos〈u, v〉.
I want to do this for many different u.

List-size preserving parameterization

Special case:

I Input consists of N uniformly random points.

I N large enough to ensure that there are N neighboring pairs.

Write Cd(θ) for the spherical measure of

Cap(u, θ) = {v : θ(u, v) ≤ θ}.

Then

N ≈
(
N

2

)
Cd(θ),

equiv.
N ≈ 2/Cd(θ)

List-size preserving parameterization

Special case:

I Input consists of N uniformly random points.

I N large enough to ensure that there are N neighboring pairs.

Write Cd(θ) for the spherical measure of

Cap(u, θ) = {v : θ(u, v) ≤ θ}.

Then

N ≈
(
N

2

)
Cd(θ),

equiv.
N ≈ 2/Cd(θ)

Algorithm: AllPairs / Nguyen–Vidick sieve

Input: list L of size N .

Search:
1. Number the points v1, v2, v3, . . . , vN

2. Test θ(vi, vj) ≤ θ for 1 ≤ i < j ≤ N

Cost of AllPairs / Nguyen–Vidick sieve
List-size preserving case

Classical search
Nguyen–Vidick (2008): (1/Cd(θ))

2+o(1)

(1/Cd(π/3))
2+o(1) = 2c(d) where c(d) = (0.4150 . . .+ o(1))d

Quantum search
Laarhoven–Mosca–van de Pol (2014): (1/Cd(θ))

1.5+o(1)

(1/Cd(π/3))
1.5+o(1) = 2c(d) where c(d) = (0.3112 . . .+ o(1))d

Cost of AllPairs / Nguyen–Vidick sieve
List-size preserving case

Classical search
Nguyen–Vidick (2008): (1/Cd(θ))

2+o(1)

(1/Cd(π/3))
2+o(1) = 2c(d) where c(d) = (0.4150 . . .+ o(1))d

Quantum search
Laarhoven–Mosca–van de Pol (2014): (1/Cd(θ))

1.5+o(1)

(1/Cd(π/3))
1.5+o(1) = 2c(d) where c(d) = (0.3112 . . .+ o(1))d

100 200 300 400 500 600 700 800 900 1,000

0

64

128

192

256

320

384

d

lo
g
2
(#
op
s)

0.4150 d
0.3112 d

Why care about the polynomial terms?

I Quantum and classical variants have different polynomial factors.

I Quantum advantage is small. Even smaller in more advanced algorithms.

I Polynomial factors are significant in low dimension.

Why care about the polynomial terms?

I Quantum and classical variants have different polynomial factors.

I Quantum advantage is small. Even smaller in more advanced algorithms.

I Polynomial factors are significant in low dimension.

Why care about the polynomial terms?

I Quantum and classical variants have different polynomial factors.

I Quantum advantage is small. Even smaller in more advanced algorithms.

I Polynomial factors are significant in low dimension.

Why care about the polynomial terms?

I Quantum and classical variants have different polynomial factors.

I Quantum advantage is small. Even smaller in more advanced algorithms.

I Polynomial factors are significant in low dimension.

What are the polynomial factors?

I Volume estimates.

I Cost of testing θ(u, v).

What are the polynomial factors?

I Volume estimates.

I Cost of testing θ(u, v).

Search predicates

I Search predicate on X :

f : X → {0, 1}

I Kernel of f :
Ker(f) = {x : f(x) = 0}

|f | = |Ker(f)|
I Predicate f ∩ g defined by:

Ker(f ∩ g) = Ker(f) ∩Ker(g)

Exhaustive search

g(1) g(2) g(3) g(4) g(5)

Exhaustive search

1 g(2) g(3) g(4) g(5)

Exhaustive search

1 1 g(3) g(4) g(5)

Exhaustive search

1 1 1 g(4) g(5)

Exhaustive search

1 1 1 1 g(5)

Exhaustive search

1 1 1 1 1

Exhaustive search

1 1 1 1 1 . . . g(57)

Exhaustive search

1 1 1 1 1 . . . 0

Filtered search

f(1) f(2) f(3) f(4) f(5) . . . f(57)
g(1) g(2) g(3) g(4) g(5) . . . g(57)

Filtered search

1 1 f(3) f(4) f(5) . . . f(57)
g(1) g(2) g(3) g(4) g(5) . . . g(57)

Filtered search

1 1 1 1 f(5) . . . f(57)
g(1) g(2) g(3) g(4) g(5) . . . g(57)

Filtered search

1 1 1 1 1 . . . f(57)
g(1) g(2) g(3) g(4) g(5) . . . g(57)

Filtered search

1 1 1 1 1 . . . 0
g(1) g(2) g(3) g(4) g(5) . . . g(57)

Filtered search

1 1 1 1 1 . . . 0
g(1) g(2) g(3) g(4) g(5) . . . 0

Quantum search

For any predicate g and unitary A, define the amplification operator:

G(A, g) := AR0A
†Rg

where

R0 |x〉 =

{
− |x〉 if x = 0

|x〉 otherwise

Rg |x〉 = (−1)g(x) |x〉 .

Quantum search

Suppose that measuring A |0〉 yields an element of Ker(g) with probability p.

Grover–Brassard–Høyer–Mosca–Tapp:

I Measuring
G(A, g)kA |0〉

with k ≈
√

1/p yields a root of g w.p. ≈ 1. . .

Boyer–Brassard–Høyer–Tapp:

I . . . even if p is not known.

Quantum search

Suppose that measuring A |0〉 yields an element of Ker(g) with probability p.

Grover–Brassard–Høyer–Mosca–Tapp:

I Measuring
G(A, g)kA |0〉

with k ≈
√

1/p yields a root of g w.p. ≈ 1. . .

Boyer–Brassard–Høyer–Tapp:

I . . . even if p is not known.

Quantum search

Suppose that measuring A |0〉 yields an element of Ker(g) with probability p.

Grover–Brassard–Høyer–Mosca–Tapp:

I Measuring
G(A, g)kA |0〉

with k ≈
√

1/p yields a root of g w.p. ≈ 1. . .

Boyer–Brassard–Høyer–Tapp:

I . . . even if p is not known.

Filtered quantum search

Parameters m1 and m2.

1. Sample j uniformly from {0, . . . ,m1 − 1}
2. Sample k uniformly from {0, . . . ,m2 − 1}
3. Define

Aj = G(D, f)jD

Bk = G(Aj, f ∩ g)k

4. Prepare and measure the state:

BkAj |0〉

Cost of filtered quantum search

Suppose that we know P/γ ≤ |g| ≤ γP .

Proposition

We can choose m1 and m2 such that FilteredQuantumSearch finds a root of
f ∩ g with probability at least 1/8 and has a cost that is dominated by
(approximately)

I γ 1
2

√
N times the cost of G(g), or

I 4
3

√
γP times the cost of Rf∩g.

Cost of filtered quantum search

Suppose that we know P/γ ≤ |g| ≤ γP .

Proposition

We can choose m1 and m2 such that FilteredQuantumSearch finds a root of
f ∩ g with probability at least 1/8 and has a cost that is dominated by
(approximately)

I γ 1
2

√
N times the cost of G(g), or

I 4
3

√
γP times the cost of Rf∩g.

Cost of filtered quantum search

Suppose that we know P/γ ≤ |g| ≤ γP .

Proposition

We can choose m1 and m2 such that FilteredQuantumSearch finds a root of
f ∩ g with probability at least 1/8 and has a cost that is dominated by
(approximately)

I γ 1
2

√
N times the cost of G(g), or

I 4
3

√
γP times the cost of Rf∩g.

Cost of filtered quantum search

Suppose that we know P/γ ≤ |g| ≤ γP .

Idealized Proposition

We can choose m1 and m2 such that FilteredQuantumSearch finds a root of
f ∩ g and has a cost that is dominated by

I 1
2

√
N times the cost of G(g), or

I 4
3

√
P times the cost of Rf∩g.

Algorithm: AllPairs / Nguyen–Vidick sieve

Input: list L of size N

1. Number the points v1, v2, v3, . . . , vN

2. For i = 1, . . . , N

3. For j = i+ 1, . . . , N

4. Test gi(vj) where gi(vj) = [θ(vi, vj) > π/3].

Algorithm: AllPairs / Nguyen–Vidick sieve

Input: list L of size N

1. Number the points v1, v2, v3, . . . , vN

2. For i = 1, . . . , N

3. For j = i+ 1, . . . , N

4. If fi(vj) then test gi(vj) where gi(vj) = [θ(vi, vj) > π/3].

Algorithm: AllPairs / Nguyen–Vidick sieve

Input: list L of size N

1. Number the points v1, v2, v3, . . . , vN

2. For i = 1, . . . , N

3. For j = i+ 1, . . . , N

4. If fi(vj) then test gi(vj) where gi(vj) = [θ(vi, vj) > π/3].

What to use for fi in a filtered search?

XOR + population count

Define a hash function family:

H = {u 7→ sgn(〈r, u〉) : r ∈ S}

XOR + population count

Fact: Pr
h←H

[h(u) 6= h(v)] =
θ(u, v)

π
.

Let Hn(x) = (h1(x), . . . hn(x)) for random hi ∈ H.

For large n, we have

HammingWeight(Hn(u)⊕Hn(v))

n
≈ θ(u, v)

π

XOR + population count

Fact: Pr
h←H

[h(u) 6= h(v)] =
θ(u, v)

π
.

Let Hn(x) = (h1(x), . . . hn(x)) for random hi ∈ H.

For large n, we have

HammingWeight(Hn(u)⊕Hn(v))

n
≈ θ(u, v)

π

XOR + population count

Fact: Pr
h←H

[h(u) 6= h(v)] =
θ(u, v)

π
.

Let Hn(x) = (h1(x), . . . hn(x)) for random hi ∈ H.

For large n, we have

HammingWeight(Hn(u)⊕Hn(v))

n
≈ θ(u, v)

π

XOR + population count

Used as a filter in implementations of sieving algorithms:

I 2014 Fitzpatrick–Bischof–Buchmann–Dagdelen–Göpfert–Mariano–Yang

I 2018 Ducas

I 2019 Albrecht–Ducas–Herold–Kirshanova–Postlethwaite–Stevens

Earlier algorithmic use

I 1995 Goemans–Williamson

I 2002 Charikar

Algorithm: AllPairs / Nguyen–Vidick sieve

Input: list L of size N

Setup:
1. Fix Hn

2. Construct a table
(i,Hn(vi))

Search:
For all i:

1. Load Hn(vi)

2. For j = i+ 1, . . . , N

3. Load Hn(vj)

4. If HammingWt(Hn(vi)⊕Hn(vj)) ≤ k

5. Test θ(vi, vj) ≤ θ.

This work: New python/mpmath package

Calculates the circuit depth, width, gate count (etc.) for popcount and filtered
quantum search subroutines.

Calculates the accuracy of random popcount filters given

I points uniformly distributed on sphere;

I points uniformly distributed in a cap of angle β.

Calculates the (normalized) spherical measure of

I caps, using 2F1 representation of Cd(θ)

I intersections of caps, using an integral representation.

100 200 300 400 500 600 700 800 900 1,000

0

64

128

192

256

320

384

d

lo
g
2
(#
op
s)

AllPair (c: RAM)
0.4150 d

AllPair (q: depth-width)
0.3112 d

100 200 300 400 500 600 700 800 900 1,000

0

64

128

192

256

320

384

448

d

lo
g
2
(#
op
s)

AllPair (c: RAM)
0.4150 d

AllPair (q: depth-width)
0.3112 d

Error correction

Image: Fowler, Mariantoni, Martinis, Cleland. (2012)

Error correction

We consider the added cost of reading syndromes, but not processing them.

(Under the same physical assumptions as Gidney–Ekera (2019))

100 200 300 400 500 600 700 800 900 1,000

0

64

128

192

256

320

384

448

d

lo
g
2
(#
op
s)

AllPair (c: RAM)
0.4150 d

AllPair (q: GE19)
0.3112 d

Algorithm: RandomBucketSearch / bgj1

Parameters: t, θ1

Input: list L of size N

Search:
1. Repeat t times:

2. Pick a random point f .

3. Run AllPairs on
Lf = L ∩ Cap(f, θ1).

Note: Optimal choice of t and θ1 is based on volume of the intersection of caps
of angle θ1 with centers at distance π/3.

Cost of RandomBucketSearch
List-size preserving case

Classical search
Albrecht–Ducas–Herold–Kirshanova–Postlethwaite–Stevens

2c(d) where c(d) = (0.3494 . . .+ o(1))d

Quantum search

2c(d) where c(d) = (0.3013 . . .+ o(1))d

100 200 300 400 500 600 700 800 900 1,000
0

64

128

192

256

320

d

lo
g
2
(#
op
s)

0.3494 d
0.3013 d

100 200 300 400 500 600 700 800 900 1,000

0

64

128

192

256

320

384

d

lo
g
2
(#
op
s)

RandomBucket (c: RAM)
0.3494 d

RandomBucket (q: depth-width)
0.3013 d

100 200 300 400 500 600 700 800 900 1,000

0

64

128

192

256

320

384

d

lo
g
2
(#
op
s)

RandomBucket (c: RAM)
0.3494 d

RandomBucket (q: GE19)
0.3013 d

Algorithm: ListDecodingSearch / BDGL

Parameters: t, θ1, θ2

Input: list L of size N

Setup:
Pick a set of t random points F
Initialize t buckets {Lf : f ∈ F}

Fill:
1. For each v in L

2. insert v into Lf if
f ∈ Cap(v, θ2)

Query:
1. For each v in L

2. Fi = F ∩ Cap(v, θ1)
3. Run AllPairs on
LF =

∐
{Lf : f ∈ Fi}.

Cost of ListDecodingSearch / BDGL

Classical search
Becker–Ducas–Gama–Laarhoven:

2c(d) where c(d) = (0.2924 . . .+ o(1))d

Quantum search
Laarhoven:

2c(d) where c(d) = (0.2652 . . .+ o(1))d

100 200 300 400 500 600 700 800 900 1,000
0

64

128

192

256

d

lo
g
2
(#
op
s)

0.2924 d
0.2652 d

100 200 300 400 500 600 700 800 900 1,000

0

64

128

192

256

320

d

lo
g
2
(#
op
s)

ListDecoding (c: RAM)
0.2924 d

ListDecoding (q: depth-width)
0.2652 d

100 200 300 400 500 600 700 800 900 1,000

0

64

128

192

256

320

d

lo
g
2
(#
op
s)

ListDecoding (c: RAM)
0.2924 d

ListDecoding (q: GE19)
0.2652 d

Barriers to a quantum speedup

qRAM

I Known constructions have some cost that grows like NO(1).

I qRAM computations are not necessarily “localizable”.

Barriers to a quantum speedup

Error correction overhead

I Cost of processing syndromes

I Cost of state distillation

I Locality constraints introduced by code

I Probability of failure from logical errors

Barriers to a quantum speedup

Poor parallelization

100 200 300 400 500 600 700 800 900 1,000

40

64

96

d

lo
g
2
(#
op
s)

ListDecoding (q: depth per search)

Barriers to a quantum speedup

Cost underestimates

I “Idealized proposition”:
P/γ ≤ |g| ≤ γP ; Pr[success] ≥ 1/8.

I Use of G(H, f).
“Run AllPairs on LF =

∐
{Bf : f ∈ Fi}.”

300 350 400 450 500 550 600 650 700 750 800

128

192

256

d

lo
g
2
(#
op
s)

πd/10

