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Preface

I would like to say that what follows may be read as an introductory text to quantum

Shannon theory, but I will not project my aspirations so heavily over what should more

properly be seen as a collection of extended notes. My notes from what I can now say, as it

draws to an end, has been the most productive and transformative year of my education.

It was less than a year ago that I decided to pursue an understanding of quantum infor-

mation theory - a decision which I think came as a surprise to many of the people around

me. Up until this year I had been working in a very applied fashion in computer science; my

interests revolving around distributed systems, cryptography, and anonymity. I was working

on privacy enhancing technologies: on my personal project, Anomos, an anonymizing peer-

to-peer file-sharing network, and on the Tor project, a more general tool for circumventing

traffic analysis on the Internet. The promise of quantum theory to break the encryption on

which those tools rely, and to provide a perfectly secure alternative to that encryption, is

perhaps what sparked my interest. But other factors certainly came into play. In the spring

2009 semester, Lee Spector’s Unconventional Computing course introduced me to reversible

computation and some basic topics in quantum computation, and Herb Bernstein’s Quantum

Mechanics for the Million served to demystify quantum mechanics and introduced me to its

mathematical techniques. These courses, and a fascination with physics going back to my

childhood, played a crucial role.

For a year following that spring semester these interests lay dormant while I continued

studying classical computer science. Then, in the summer of 2010, I became interested in

quantum complexity theory, primarily in how the class BQP was related to the polynomial

hierarchy, and began perusing the available literature. I was woefully out of my depth with

much of what I found, but gleaned what I could from (Ethan) Bernstein and Vazirani’s

work [BV97], and a few of Scott Aaronson’s papers. Around this time Herb suggested I

try a gentler introduction to the field and leant me a copy of David Mermin’s “Quantum

Computer Science,” [Mer07] from which I taught myself for the remainder of the summer.

A fortuitous conversation with a friend, just before the start of the fall semester, inspired

me to formalize my knowledge of classical information theory. And so I enrolled in a course

on the topic at the University of Massachusetts. The topic of the present work would not be

quantum Shannon theory if not for this decision. Throughout the semester, while learning

the classical theory in class and from [Cov06], I was self-teaching quantum computation

and information from Nielsen and Chuang [NC00] and primary sources. In searching for
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a Division III topic I meandered through quantum algorithms, quantum complexity, and

even back into classical communication complexity; but through all that wandering, the

profoundly positive experience I had studying classical information theory kept drawing me

back towards Shannon theoretic topics. A discussion with Herb, in December, about the

quantum reverse Shannon theorem finally pinned me down.

My concurrent interest in communication complexity lead me to the proof of the “one-

shot” classical reverse Shannon theorem in [HJMR07], and so in January my primary focus

was on learning the requisite material to prove a similar one-shot version of the quantum

reverse Shannon theorem. I don’t think I understood at the time the magnitude of the

task I was setting out for myself, but I had intentionally picked a lofty target. Without the

structure of a traditional course, I’ve often found that setting seemingly unattainable goals

is best way to motivate and direct my learning.

As I explored the literature surrounding topics such as the resource inequality formal-

ism, decoupling theorems, and the known channel coding results, I eventually discovered

that Abeyeshinghe et al. had proved a one-shot fully quantum reverse Shannon theorem

in [ADHW06]. The present work is the result of the research which brought me to that

point.

In early discussions about this work with my advisors, the idea was tossed about that it

might be written as an introduction to quantum Shannon theory for undergraduates. But

as I mentioned at the intro, I prefer to view this as notes which may be more informative

to the educator than the student. Perhaps you, as an educator, may view this work as a

case study in how a young student might approach quantum information theory. My errors

and omissions, from this perspective, indicate the stumbling blocks which must be smoothed

over as we work to make this field more comprehensible to a larger audience.
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CHAPTER 1

Our Mathematical Toolkit

Of principal importance to the study of quantum Shannon theory is the ability to quantify

and compare quantum states in terms of their information content. Much of the development

of this field has followed from classical information theory, some familiarity with which is

assumed here. We begin by introducing the basic entropic quantities which form the building

blocks of the coding theorems and protocols which are to come later. Some classical infor-

mation theoretic quantities are briefly introduced - primarily for ease of reference. Readers

unfamiliar with these quantities are directed to [Cov06] for more rigorous definitions, as well

as history and applications.

1.1 Classical information quantities

Entropy Introduced in [Sha48]

H(X) = −E [log p(x)] = −
∑
x∈X

p(x) log p(x) (1.1)

Figure 1.1: An often useful visual aid for remembering the relations between classical entropic
quantities. H(X) is the entire left (blue) circle, H(Y ) the entire right (red) circle. The union of
the two circles is H(X,Y ); the intersection I(X;Y ); and the difference H(X|Y ) or H(Y |X).
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Where, by convention, log 0 is taken to be 0 rather than negative infinity. Occasionally one

will see H(X) with a subscript, such as H2(X) or He(X), which indicates the base of the

logarithms appearing in the expression and subsequently the units of the result. For example,

a uniform distribution over 16 values has binary entropy H2(X) = −
∑15

x=0
1
16

log2
1
16

= 4. As

we will see in section 2.1, we can therefore represent samples of this random variable with 4

binary digits, and so we say that H2 has units of bits. He(X) = 1
log2 e

H2(X) and has units

of nats; for arbitrary d, Hd(X) has units of dits. We will almost always write H without a

subscript; logarithms are assumed to be base two unless otherwise noted.

Throughout this text we will use capital letters (X) to denote random variables, calli-

graphic letters (X ) to denote the sample space of a random variable, and lowercase letters

(x) to denote individual samples.

Relative Entropy Also known as the Kullback-Leibler- or KL-Divergence, the relative

entropy is a distance pseudo-metric1 between probability distributions. It can be used, for

instance, to tell us the amount of uncertainty (in bits) which is introduced by the inappro-

priate use of one distribution to describe events actually drawn from a different distribution.

D(p‖q) = E
[
log

p(x)

q(x)

]
=
∑
x∈X

p(x) log
p(x)

q(x)
(1.2)

Mutual Information is another ubiquitous quantity in classical information theory. It

quantifies the amount of “overlap” between random variables, or more explicitly, the amount

of information which can be obtained about one random variable from a second. The KL-

divergence provides a nice characterization (presented below) of the mutual information as

the distance between the joint and factor distributions of X and Y .

I(X;Y ) = E
[
log

p(x, y)

p(x)p(y)

]
= D(p(x, y)||p(x)p(y))

= H(X) +H(Y )−H(X, Y )

= H(X)−H(X|Y )

= H(Y )−H(Y |X)

(1.3)

1It fails to be a true metric because it is not symmetric in its arguments D(p‖q) 6= D(q‖p)
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1.2 Quantum Mechanics

Some background in quantum mechanics is assumed in this text, but we will need surprisingly

little of the quantum theory. All that is really necessary is some basic linear algebra, a few

rules about the types of objects which constitute valid quantum states, and a few more rules

about how these states may be transformed.

1.2.1 Dirac (bra-ket) notation

A pure state is represented by a ket, an n×1 (column) vector of complex numbers. The pure

states we will most frequently encounter in this text are those of the computational basis,

the zero and one states of a qubit.

|0〉 =

[
1

0

]
|1〉 =

[
0

1

]
(1.4)

The set of all pure quantum states (in a two-dimensional space) is given by the unit circle

on the complex plane. In other words,

|ψ〉 = α |0〉+ β |1〉 (1.5)

is a valid state if and only if |α|2 + |β|2 = 1. Once a basis has been chosen, such as the

computational, any pure state which may be written as a linear combination of the basis

kets is a superposition state. For instance,

(|0〉+ |1〉)√
2

=

[
1√
2
1√
2

]
(|0〉 − |1〉)√

2
=

[
1√
2

− 1√
2

]
(1.6)

are two possible superpositions of the zero and one states.

To each pure state φ-ket, |φ〉, corresponds a unique dual state φ-bra, 〈φ|. A bra is

obtained by applying the conjugate transpose operation † to a ket. Suppose |φ〉 =

[
a+ bi

c+ di

]
,

then

|φ〉† = 〈φ| = [(a+ bi)∗, (c+ d)∗] = [a− bi, c− di] , (1.7)

wherein ∗ denotes complex conjugation.

A bra may be seen as a linear functional taking quantum states to probability amplitudes
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- complex numbers α for which 0 ≤ |α|2 ≤ 1 may be interpreted as a probability. For a pure

state |ψ〉, 〈ψ|ψ〉 = 1 and 〈ψ⊥|ψ〉 = 0, where |ψ⊥〉 is a state orthogonal to |ψ〉.
The bracket, 〈·|·〉, and the inner product 〈·, ·〉 found in functional analysis share more

than a superficial similarity in notation. A bracket is precisely the inner product defined on

the space of quantum states, which is itself a complex Hilbert space.

1.2.2 Kronecker product

We can discuss systems of more than one qubit by taking the direct product of the individual

qubits. The matrix direct product goes by the alternative name of the Kronecker product

(symbolically, ⊗) and takes matrices of arbitrary size to block matrices, each element of

which is itself a matrix. The block matrix representation is rarely used, as the Kronecker

product of an i× j and a k × l matrix can also be represented as an ik × jl matrix.

|0〉 ⊗ |0〉 =


1

[
1

0

]

0

[
1

0

]
 =


[

1

0

]
[

0

0

]
 ≡


1

0

0

0

 (1.8)

1.2.3 Density matrices

Dirac’s bra-ket notation is exceedingly useful in the description of pure states and their

evolution. However, we also desire to discuss probabilistic ensembles of pure states, or mixed

states, and the bra-ket notation leaves something to be desired in such settings. A density

matrix, on the other hand, gives a complete statistical representation of a quantum state,

pure or mixed.

From a pure state, we obtain a density matrix by taking the kronecker product on the

right by the state’s dual (the kronecker product symbol is rarely written).

|0〉 ⊗ 〈0| ≡ |0〉 〈0| =

[
1 0

0 0

]
|1〉 〈1| =

[
0 0

0 1

]
(|0〉+ |1〉)(〈0|+ 〈1|)

2
=

1

2

[
1 1

1 1

]
(1.9)

A mixed state is simply a probability distribution over a set of pure states. As such a
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mixed state may be represented as a convex combination of pure states:

ρ =
∑
i

pi |xi〉 〈xi|. (1.10)

Since both pure and mixed states may be represented by density matrices, it is useful to

have a method for distinguishing them. This is fortunately quite simple, a pure state always

satisfies Tr (ρ2) = 1 and a mixed state Tr (ρ2) < 1.

When we discussed pure states we gave a simple criterion for whether or not a given

state was valid. Specifically, if |ψ〉 =
∑

i µi |i〉, then |ψ〉 is a valid state if and only if∑
i |µi|2 = 1. Following from this restriction on pure states, and the general construction of

density matrices, there are a few criteria by which we may determine if a given matrix is a

valid density operator. Density matrices are completely characterized by three properties,

they are Hermitian (ρ = ρ†), trace-one (Tr (ρ) = 1), and positive semi-definite (〈φ| ρ |φ〉 ≥ 0

for all |φ〉).
The first of these is immediate from the construction of density matrices as (|φ〉 〈φ|)† =

〈φ|† |φ〉† = |φ〉 〈φ|. This generalizes to mixed states since the conjugate transpose operation

is distributive.

The matrix trace is a linear function, Tr (p1A+ p2B) = p1Tr (A) + p2Tr (B), so the

trace-one condition simply guarantees that the probability distribution of the mixture is

normalized to 1. Tr (ρ) =
∑

i piTr (ρi) =
∑

i pi.

Finally, we note that every density matrix has an eigenvalue decomposition ρ =
∑

i λi |i〉 〈i|.
A matrix is positive semi-definite if its eigenvalues (λi) are all greater than or equal to zero.

Ensuring that a density matrix is positive semi-definite then simply ensures that it is a valid

convex combination of the eigenstates (|i〉).

1.2.4 Joint systems

Suppose we have a state distributed across two systems, A and B. This is the case, for

instance, when two parties, Alice and Bob, share an entangled state. Alice and Bob’s

individual particles reside on the Hilbert spaces HA and HB respectively, and their joint

state may be said to reside on the tensor product space HA ⊗ HB. We designate with a

superscript the systems on which a state resides; Alice and Bob’s shared entanglement may

be represented as ΦAB.

For concreteness, let us suppose that A and B are both single-qubit systems. Each

therefore has a representation in the computational basis, {|0〉 , |1〉}. The joint system is
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represented in the basis {
∣∣0A〉 , ∣∣1A〉} × {∣∣0B〉 , ∣∣1B〉} = {

∣∣0A0B
〉
,
∣∣0A1B

〉
,
∣∣1A0B

〉
,
∣∣1A1B

〉
}

1.2.5 Partial Trace

Given a state on multiple systems, we may wish to determine the statistical structure of that

state on just one of its subsystems. The action which gives the reduced density operator of

a multi-partite system is the partial trace. It is often referred to casually as “tracing out”

or “tracing over” the discarded system(s). For instance, tracing out subsystem B of the

bipartite state ρAB is denoted:

ρA = TrB
(
ρAB

)
(1.11)

Calculating the partial trace requires our knowing the bases in which each subsystem is

represented2. It is convenient to treat these as ordered bases, so that we may index a set of

n basis vectors by the first n natural numbers. Assuming that the B subsystem of ρAB has

rank m, the value at the ith row and jth column of ρA is given by:

(ρA)i,j =
m∑
k=0

〈
iAkB

∣∣ ρAB ∣∣jAkB〉 (1.12)

As a more illustrative example, consider the following. The matrix on the right hand

side is a two-qubit state, ρAB and the left hand side is the reduced density matrix ρA.

[
a00,00 + a01,01 a00,10 + a01,11

a10,00 + a11,01 a10,10 + a11,11

]
= TrB



a00,00 a00,01 a00,10 a00,11

a01,00 a01,01 a01,10 a01,11

a10,00 a10,01 a10,10 a10,11

a11,00 a11,01 a11,10 a11,11


 (1.13)

1.2.6 Purification

It is a well known and often used fact within quantum information theory that any mixed

state may be seen as the reduced density matrix of a pure state on a larger Hilbert space.

This is accomplished mathematically by introducing a fictitious reference system. A mixed

2Unless ρAB is a product state which factors across the systems, in which case TrB
(
ρA ⊗ ρB

)
=

ρATr
(
ρB
)

= ρA. The last equality follows because ρB , as a density matrix, must have unit trace
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state ρA is taken to be the reduced density matrix of a pure state on ρAR, i.e.

ρA = TrR
(
ρAR

)
(1.14)

ρAR is obtained from ρA in a process called purification. A state is purified by first taking

its eigenvalue decomposition:

ρA =
∑
i

λi |i〉 〈i| (1.15)

Then, by choosing any orthonormal basis for the reference system, R (in the following ex-

ample we use the eigenbasis of ρA), the purified state is constructed as

|ψ〉 =
∑
i

√
λi |i〉A ⊗ |i〉R. (1.16)

The density matrix of which is given by

|ψ〉 〈ψ| =
∑
i

∑
j

λi |i〉A |i〉R 〈j|A 〈j|R. (1.17)

Purifications of mixed states are not unique, as can easily be seen by considering that we

were free to choose the basis in which to represent the reference system in 1.16.

1.2.7 Evolution

Until now we’ve made no mention of the fact that systems seldom, if ever, stay entirely

isolated. They interact with other systems, are acted on by external forces, and otherwise

change from moment to moment. In quantum information theory this change is often referred

to as the evolution of the system, and much like the evolution of biological systems we will

not want to attach particularly positive, nor negative, connotations to the term. Evolution is

meant to be a fantastically general concept, describing everything from the most purposeful

and finely controlled of experimental operations, to the most unpredictable and chaotic of

interactions with the environment.

The evolution of closed quantum systems is described by unitary transformations. Math-

ematically, such transformations are given by n×n complex matrices, U , for which UU † = I.

This definition immediately gives rise to some simple observations. First, U † is also a unitary

transformation (U †(U †)† = U †U = I) and as such can be realized by a physical device. Since

U † = U−1, U and U † are both reversible operations.
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Let us consider some examples of unitary transformations. Among the most commonly

encountered in quantum information theory are the Pauli (X, Y, Z), and Hadamard (H)

single-qubit gates3.

X =

[
0 1

1 0

]
Y =

[
0 −i
i 0

]
Z =

[
1 0

0 −1

]
H =

1√
2

[
1 1

1 −1

]
(1.18)

The Pauli X gate can be seen as the quantum analog of the boolean NOT operator which

takes 0 to 1 and vice versa. Certainly X |0〉 = |1〉 and X |1〉 = |0〉, but as a result of unitarity,

X has a similar action on superpositions of these states. For instance, if |φ〉 = 1√
2
(|0〉 − |1〉),

then X |φ〉 = 1√
2
(|1〉 − |0〉). Z can be seen to act similarly on the phases of a state, in

fact the two can be seen to be dual under the change of basis induced by the Hadamard

transformation. Z = HXH.

We will frequently work with density matrices instead of kets. The evolution of a density

matrix is given by

ρ′ = UρU †. (1.19)

Which can easily be seen by noting that U is linear and that ρ has a representation as

a convex combination of pure states. To simplify the following expression, we drop the

probabilities in the sum and write the states |φi〉 as subnormalized quantities |φ̂i〉 =
√
pi|φi〉.

UρU † = U

(∑
i

|φ̂i〉〈φ̂i|

)
U †

=
∑
i

U |φ̂i〉〈φ̂i|U †

=
∑
i

U |φ̂i〉(U |φ̂i〉)†

(1.20)

We leave the discussion of open quantum systems and interaction with the environment

to chapter 3.

1.2.8 No cloning theorem

One of the major differences between classical and quantum systems is that arbitrary quan-

tum states cannot be copied. This fact was shown in [WZ82] to follow directly from the

3In addition to being unitary these matrices are also self-adjoint or Hermitian, in other words, U = U†.
As such, X2 = Y2 = Z2 = H2 = I. This is by no means a necessary condition.
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linearity of quantum mechanics - it is one of the most fundamental results in quantum

information theory, and many important theorems hinge upon it.

We give a brief proof similar to that found in [WZ82], although many others exist.

Suppose there exists a qubit cloning operation U . For such an operation to be physical,

i.e. described by quantum mechanics, it must be unitary. Without loss of generality we

assume that U acts on two qubits - the first for the to-be-cloned state and the second,

initially in the |0〉 state, for the result.

Suppose further that U acts as expected on two orthogonal states |ψ〉 and |φ〉. That is

to say,

U(|ψ〉 ⊗ |0〉) = |ψ〉 |ψ〉 , and

U(|φ〉 ⊗ |0〉) = |φ〉 |φ〉 .
(1.21)

Before we proceed, note that U which clone orthogonal states do in fact exist. For

instance if |ψ〉 = |0〉 and |φ〉 = |1〉 then the controlled-not operator (cX), given by

cX =


1 0 0 0

0 1 0 0

0 0 0 1

0 0 1 0

 (1.22)

meets the specifications of 1.21.

To see that no general cloning operation exists we need only ask how U acts on the equal

superposition of the orthogonal states |ψ〉 and |φ〉, 1√
2
(|ψ〉 + |φ〉). If U were truly a cloning

operation the result would be two copies of this state, i.e. 1√
2
(|ψ〉+ |φ〉)⊗ 1√

2
(|ψ〉+ |φ〉).

However, it can be shown that this is not the case:

U

(
|ψ〉+ |φ〉√

2
⊗ |0〉

)
= U

(
|ψ〉 |0〉+ |φ〉 |0〉√

2

)
=
U |ψ〉 |0〉√

2
+
U |φ〉 |0〉√

2

=
1√
2

(|ψ〉 |ψ〉+ |φ〉 |φ〉)

(1.23)

Clearly not the result we would expect from a true cloning operation. The second line follows

because U is a linear operator. Since the only assumption made was that U could clone two

states, we’ve shown that general unitary cloning operations - and therefore physical cloning

operations - cannot exist within a universe described by quantum mechanics.
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1.3 Quantum information quantities

von Neumann entropy Recall from classical information theory that Shannon’s entropy

function H(X) = −
∑

x∈X px log(x) gives us, intuitively, a measure of the uncertainty present

in the random variable X. Countless uses for this remarkable equation have been found since

its exposition in Shannon’s seminal 1948 paper [Sha48], and so it is only natural that an

analogue suitable for dealing with quantum states would be sought. The measure most

frequently used today is the von Neumann entropy, named after John von Neumann4 who

introduced it in 1927. The von Neumann entropy was first given information-theoretic

significance by Holevo [?], who proved that it places an upper bound on the accessible

information of a quantum channel, but it was Schumacher [Sch95] who made the analogy

with the Shannon entropy complete.

The von Neumann entropy is expressed as, S(ρ) = −Tr (ρ log(ρ)). A superficial re-

lationship with Shannon’s entropy emerges when we represent ρ in a basis in which it

becomes diagonal. For instance, given the eigenvalue decomposition ρ =
∑

x λx |x〉 〈x|,
we may reexpress the von Neumann entropy as the Shannon entropy of ρ’s eigenvalues:

S(ρ) = −
∑

x λx log(λx).

A major contribution of [Sch95] was to show that the von Neumann entropy of an ensem-

ble gives the expected number of qubits needed to encode states from that ensemble. The

process for doing so is now known as Schumacher compression - it will be introduced in full

in section 2.1.

Quantum joint entropy Much like the classical joint entropy, the quantum joint entropy

S(ρA, ρB) is simply given by the von Neumann entropy of the joint system S(ρAB). Fre-

quently one will see such quantities written as S(A,B)ρ. I will continue with this convention

for the remainder of this report.

For a pure state |ψ〉ABE the following useful equalities hold:

S(B,E)ψ = S(A)ψ

S(A,E)ψ = S(B)ψ

S(A,B)ψ = S(E)ψ

(1.24)

4von Neumann is, incidentally, responsible for suggesting the term “entropy” to Shannon when he was
struggling to name his measure of information [TM71].
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More generally we may state that bipartitions of any multi-partite pure state have equal

von Neumann entropy. Each portion purifies the other which implies (see section 1.2.6) that

they have identical eigenvalues.

Quantum mutual information The quantum mutual information is also very similar to

its classical counterpart. S(A : B)ρ = S(A)ρ + S(B)ρ − S(A,B)ρ

Quantum conditional entropy The quantum conditional entropy was misunderstood

and a subject of debate for much of the early development of quantum Shannon theory. This

is because, quite surprisingly, the intuitive definition following from classical information

theory of S(A|B)ρ = S(AB)ρ − S(B)ρ can take on negative values. A major conceptual

breakthrough came about in [HOW05] in which an operational definition of the negative

conditional information was given. [HOW05] introduces the quantum state merging primitive

for reasoning about the transfer of partial information from one party to another. In other

words, the amount of quantum information Alice must transfer to Bob in order to put her

share of bipartite state ρAB into his hands. [HOW05] lays out three illustrative examples of

this which are summarized here.

Case 1: Alice holds a maximally mixed state, ρA = 1
2
(|0〉 〈0| + |1〉 〈1|) and Bob holds

ρB = |0〉 〈0|. S(A|B)ρ = S(A,B)ρ − S(B)ρ = 1. And indeed Alice can give Bob her share

with 1 qubit of quantum communication.

Case 2: Alice and Bob share the state ρAB = 1
2
(|00〉 〈00|AB + |11〉 〈11|AB) The condi-

tional entropy of this classically correlated state, S(A|B)ρ = 0. Alice need only measure her

particle in the Hadamard basis { 1√
2
(|0〉 ± |1〉)} and send the result to Bob to enable him to

recreate their state locally.

Case 3: Alice and Bob share a fully entangled state ρAB = |Φ+〉 〈Φ+|AB = 1√
2
((|00〉 +

|11〉)(〈00|+ 〈11|)AB). We now encounter a negative conditional entropy, S(A|B)ρ = −1, but

this is easily understood in the context of state merging. ρAB actually gives Alice and Bob

some capacity for future transmission of quantum information. Bob, knowing that he shares

a Φ+ state with Alice, is free to create an additional Φ+ locally and keep the one he shares

with Alice for future use.
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1.4 Measurement

The phases and amplitudes of quantum states are represented mathematically as complex

values with unbounded precision, and so it is tempting to believe that, with a delicate enough

experimental apparatus, one could store the entire Library of Congress, tweets and all, in

but a single relative phase. Indeed, this is not entirely out of the question.

But measurement is not so delicate a process. Our intervention into a quantum system

can only reliably distinguish states which are orthogonal to each other. If we limit ourselves

for the moment to qubit systems, we may separate |0〉 from |1〉 and |+〉 from |−〉, but no

measurement can draw a definitive line between |0〉 and |+〉 - much less for that matter

between |Wikipedia〉 and |Brittanica〉 states.

Disappointing as this may be, we will find measurement to be an indispensable tool in

our exploration of the quantum realm, so we will now consider its various forms.

1.4.1 Projective Measurement

A projection operator is any linear transformation, P , such that P 2 = P . A simple example

with a clear geometric interpretation is the matrix

A =

1 0 0

0 1 0

0 0 0

 . (1.25)

Which projects vectors in R3 onto the xy-plane by zeroing out their z component. Applying

this matrix twice (in effect zeroing z twice) has no additional effect, as can be verified by

checking that A2 = A.

A projective measurement is a collection of orthogonal projection operators {Pd} such

that
∑

d Pd = I. The orthogonality constraint here implies that PiPj = δijPi. Where δij is

the Kronecker delta.

We will often refer to measurement in a particular basis, by which we mean that the

projection operators are of the form |φi〉 〈φi| where φi are the linearly independent column

vectors of the basis matrix in question. The canonical example is measurement in the compu-

tational basis, where, for a single qubit system, the projection operators are {|0〉 〈0| , |1〉 〈1|}.
The Bell basis, which distinguishes between the four Bell states, is also common and has

projectors {|Φ+〉 〈Φ+| , |Ψ+〉 〈Ψ+| , |Φ−〉 〈Φ−| , |Ψ−〉 〈Ψ−|}
A measurement of a state ρ which yields a result d results in a new density matrix for
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the state,

ρ′ =
PdρPd

Tr (Pdρ)
. (1.26)

Here Tr (Pdρ) is the probability, prior to measurement, of obtaining d as the measurement

result. Dividing the post measurement state by this probability ensures that the result

remains a valid density matrix with trace one.

It should be noted that we could have equally well written the denominator as Tr (Pdρ),

which may be somewhat clearer depending on ones familiarity with the properties of matrix

trace.5

Example: Quantum state discrimination Projective measurements are used exten-

sively in quantum algorithms and communication protocols - it has even been shown that

measurement is complete for quantum computation, by which it is meant that a quantum

computer composed entirely out of single-qubit measurements can be made to have the same

power as the general quantum circuit model [RB01].

Most often though, measurements are used to distinguish states so as to extract classical

information from them. This can be done perfectly, at a rate of one classical bit per measured

qubit, assuming the states are orthogonal. And even though one often hears that non-

orthogonal states cannot be distinguished, what is really meant is that this optimal rate

cannot be achieved. Provided we use a clever measurement scheme, and are willing to accept

some probability of error, even non-orthogonal states can sometimes be distinguished.

As an example, let’s consider a source which prepares an equal mixture of the distinct,

yet non-orthogonal, states |P 〉 = |0〉 and |Q〉 = 1√
2
(|0〉+ |1〉). The source will be represented

as the mixed state ρ = 1
2
(|P 〉 〈P |+ |Q〉 〈Q|).

In general, the best discrimination scheme using projective measurements is to mea-

sure in the {|P 〉 ,
∣∣P⊥〉} basis (in which

∣∣P⊥〉 is a state orthogonal to |P 〉, and therefore

〈P |P⊥〉 = 0) [Iva87]. In the specific case of our example, this is equivalent to measuring in

the computational basis.

A measurement result of
∣∣P⊥〉 guarantees that the prepared system is in the |Q〉 state

as there is zero probability that |P 〉 would yield
∣∣P⊥〉. On the other hand, a measurement

result of |P 〉 tells us nothing about the prepared system as both |〈P |P 〉|2 and |〈P |Q〉|2 are

nonzero.

5Recall that the trace is invariant under cyclic permutations i.e. Tr (ABC) = Tr (BCA) = Tr (CAB).
By the idempotency of projection operators Tr (Pdρ) = Tr

(
P 2
d ρ
)
; invoking the cyclic property of the trace

produces Tr (PdρPd).
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Since |Q〉 is prepared with probability 1
2
,
∣∣P⊥〉 is detected with probability 1

2
|〈P⊥|Q〉|2 =

0.25.

This is optimal for schemes which perform single-qubit projective measurements on indi-

vidual samples from the source. It may come as a surprise, however, that we can do better

without considering multi-qubit or aggregate measurements. To understand how we’ll need

to loosen the constraints and consider measurements in their most general form.

1.4.2 Generalized Measurements

A positive operator valued measure, or POVM, is any collection of positive-semidefinite ma-

trices which sum to the identity. In other words, {Ed} is a POVM if
∑

iEd = I and each

element is a Hermitian matrix with eigenvalues all greater than or equal to zero.

We will find it useful to consider each Ed as being equal to MdM
†
d . Such a decomposition

is guaranteed to exist by virtue of Ed being positive semidefinite; Md and M †
d can be obtained

by the Cholesky decomposition algorithm, though it should be noted that the decomposition

is not unique - there are infinitely many “square roots” of Ed.

The probability of a measurement on ρ yielding outcome d is given by Tr (Edρ) or equiv-

alently Tr (MdρMd†). The post measurement state is given by:

ρ′ =
MdρM

†
d

Tr
(
MdρM

†
d

) . (1.27)

Notice that the post-measurement state given here is entirely equivalent to that following

a projective measurement iff the POVM elements are projectors. In that case, Ed = Md =

M †
d . In general, POVM measurements result in post-measurement states which are not as

well behaved as their projective counterparts. Specifically, there is no guarantee that the

measurement is repeatable.

It may not be immediately clear that we’ve gained anything with this added generality.

Indeed, the only liberty we’ve gained is that the elements of {Ed} need not be pairwise

orthogonal with each other. To see how this can be used to our advantage, let’s consider an

example.

Example: Unambiguous quantum state discrimination Returning to our example

of quantum state discrimination, we will now see how single-qubit generalized measurements

19



can outperform projection at a discrimination task.

Our ability to distinguish non-orthogonal states is still conditioned on our willingness

to accept some level of error. Using projective measurements, this error was presented as

misclassification, (|0〉+ |1〉)/
√

2 states were sometimes labelled as |0〉. This was because the

orthogonality constraint on the projection matrices allowed us to have no more measurement

results than the system had dimensions. POVM measurements do not have this restriction

and so we can create a POVM which has a measurement result for each state we want to

classify and an extra result to indicate that no classification can be made.

A scheme which accomplishes this is known as unambiguous quantum state discrimina-

tion6. And the lack of ambiguity isn’t the only improvement over the projective measurement

scheme. Recall from the previous example that projective measurements gave us a proba-

bility of classification no better than 1
2
|〈P⊥|Q〉|2. The use of UQSD [Iva87] improves this to

1− 〈P |Q〉.
Figure 1.2 depicts the UQSD scheme in question. The POVM elements are built from∣∣P⊥〉, ∣∣Q⊥〉, and |err〉 (the error syndrome). Note that the figure is two-dimensional - the

dashed lines indicate possible linear combinations. |P 〉 can be written as a linear combination

of
∣∣Q⊥〉 and the error syndrome, but |Q〉 has no

∣∣Q⊥〉 component. A measurement result of∣∣Q⊥〉 therefore indicates, with certainty, that the measured state is |P 〉. Similarly, a result

of
∣∣P⊥〉 signals that the measured state is |Q〉. No information about the system is gained

on measuring the error syndrome.

Figure 1.2

More formally, the POVM elements are defined as:

E1 = k1(I − |P 〉 〈P |) = k(|1〉 〈1|)

E2 = k2(I − |Q〉 〈Q|) = k((|0〉 − |1〉)(〈0| − 〈1|))

E3 = I − E2 − E3

The values of k1 and k2 here must be chosen to ensure that

E3 is positive semidefinite, however any choice of k1 and k2

which meets this criterion is a valid POVM. Our example val-

ued both non-error results equally, and so k1 and k2 were taken

to be equal. There is nothing restricting one from choosing

POVM elements which are biased towards certain outcomes.

In general, there is no closed form solution for determining

the optimal POVM for a measurement task, in practice, one

6UQSD is possible with projective measurements as well but involves the addition of an ancillary system
- the use of POVMs is conceptually simpler
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is often found numerically using gradient descent or similar

techniques [REK05].

In our example, k1 = k2 =
√

2/(1 +
√

2). This achieves

the optimal probability of correct classification: 1− 〈P |Q〉 =

1− 1/
√

2 ≈ 0.293.

1.5 Distinguishability

Our investigation of measurement has showed us, mathematically at least, how quantum

states may be distinguished; it has not, however, shown us how to determine a priori whether

two states are distinguishable, or for that matter how distinguishable they may be. This

problem of distinguishability is intimately related to the very well studied classical problem

of distinguishing probability distributions - which is perhaps obvious if we consider that the

application of a measurement to density matrix gives rise to a probability distribution on

the potential measurement outcomes.

This section describes several distinguishability measures which we will make extensive

use of in the chapters to come, for that reason they are presented more rigorously than

much of the other material in this text. The reader may choose to read this section lightly

and return to it later only to clear up points of confusion. Readers who do not find this

section rigorous enough are referred to the excellent explication of these quantities and their

applications found in [FvdG97].

1.5.1 Trace Distance

One of the most natural, and simplest to compute, measures of distinguishability is the trace

distance:

D(ρ, σ) =
1

2
‖ρ− σ‖tr (1.28)

Where ‖A‖tr = Tr
(√

AA†
)

is trace norm (also known as the Schatten 1-norm). The

factor of 1
2

constrains the range of D to [0, 1], but is omitted in some texts.

[FvdG97] notes that the trace distance is closely related to the Kolmogorov distance on
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classical probability distributions, defined as:

K(p, q) =
1

2

∑
x∈X

|p(x)− q(x)| (1.29)

Recalling that the combination of density matrix and measurement yields a probability

distribution, the trace distance can be seen as the Kolmogorov distance maximized over all

measurements, E , in the set of possible measurements, M. Letting pE(η) be the probability

distribution which results from applying E to η,

D(ρ, σ) = max
E∈M

K(pE(ρ), pE(σ)) (1.30)

The optimization here is in general difficult to compute, so 1.28 should be used in practice.

1.5.2 Fidelity

Another frequently used measure of distinguishability is the fidelity. For pure states, the

quantum fidelity is a relatively straightforward quantity which can be seen as the “overlap”

between the states.

F (|φ〉 , |ψ〉) = |〈φ|ψ〉|2 = cos2 (θ) (1.31)

Where θ is the angle between the vectors. Equation 1.31, henceforth, the pure-state

fidelity, generalizes nicely to the fidelity between a pure and a mixed state:

F (|φ〉 , σ) = 〈φ|σ |φ〉 (1.32)

Which has a natural interpretation as the average pure-state fidelity between |φ〉 and the

pure states of the ensemble σ.

Both quantities attain a maximum of 1 when the states are identical, and a minimum

of 0 for orthogonal states. Note that this differs from the trace distance which yields 0 for

indistinguishable and 1 for perfectly distinguishable states.

The situation is a bit more complex for arbitrary mixed states. Jozsa examined this

problem in [Joz94] and set out four reasonable axioms that any mixed-state fidelity should

satisfy.

1. The fidelity should be bounded between 0 and 1, and should achieve 1 only when the

states are identical. 0 ≤ F (ρ, σ) ≤ 1;F (ρ, σ) = 1 iff ρ = σ.
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2. It should be symmetric in its arguments. F (ρ, σ) = F (σ, ρ).

3. Equation 1.32 should hold if ρ is pure.

4. The fidelity should be is invariant under unitary transformation, i.e. F (ρ, σ) = F (UρU †, UσU †)

for arbitrary unitary transformations U .

He then demonstrated that the following quantity, first introduced by Uhlmann in [Uhl76],

satisfies all of these axioms and has several other, noteworthy, properties7

F (ρ, σ) =
(

Tr
(√

ρ1/2σρ1/2
))2

(1.33)

In addition to satisfying Jozsa’s axioms, this fidelity measure was shown to be:

a) Multiplicative: F (ρ1 ⊗ ρ2, σ1 ⊗ σ2) = F (ρ1, σ1)F (ρ2, σ2)

b) Non-decreasing: Following any measurement of ρ and σ with resulting density matrices

ρ′, σ′; F (ρ′, σ′) ≥ F (ρ, σ)

Equation 1.33 is likely to bewilder the first-time viewer, and though a proof will not be

given here, two equivalent statements will be presented which may provide insight. Through-

out this work we will use equation 1.33 as the definition of fidelity, as it is easiest to calculate,

but the reader is encouraged to think of fidelity as one of the following, more conceptually

transparent, quantities.

The first is given by Uhlmann’s theorem, which states that the fidelity of mixed states is

equal to the maximum fidelity between purifications of those states [Uhl76]. As we learned

in section 1.2.6, any mixed state may be “purified” - made into a pure state - by introduction

of a purely mathematical reference system. Uhlmann’s theorem shows that we can use these

purifications, and equation 1.31, to evaluate the fidelity of mixed states. Specifically, letting

|ψρ〉 be a fixed purification of ρ and letting |ψσ〉 range over all possible purifications of σ,

F (ρ, σ) = max
|ψσ〉

F (|ψρ〉 , |ψσ〉) = max
|ψσ〉

|〈ψρ|ψσ〉|2 (1.34)

The maximization is necessitated by the fact that purifications are not unique. Without it,

various choices of |ψρ〉 and |ψσ〉 would yield different fidelities.

A third, equivalent, definition of fidelity is given by:

F (ρ, σ) = min
{Eb}

(∑
b

√
Tr (ρEb)

√
Tr (σEb)

)2

(1.35)

7Some works, notably [NC00], define fidelity as the square root of equation 1.33 - this has caused sufficient
confusion to make footnotes such as the current appear almost as frequently as the fidelity.

23



Wherein the minimization is over all possible measurements (see section 1.4.2) and the

term minimized is the square of a measure of the overlap between probability distributions

known as the Bhattacharyya coefficient. A proof of this formula’s equivalence to 1.33 is

given in [FC96]. The Bhattacharyya coefficient can be seen as the dot product of unit-

length probability vectors, and as such has a simple geometric interpretation as the cosine

of the angle between those vectors. This gives us perhaps the most intuitive definition yet -

the fidelity is a measure of how indistinguishable two states remain when the best possible

measurement is used to distinguish them.

The optimizations in the later two definitions make them much more difficult to compute

than equation 1.33, making 1.33 the preferred definition.

There is a close relationship between fidelity and trace distance. many proofs make use

of the following relationship between the two, first introduced in [FvdG97].

1−
√
F (ρ, σ) ≤ D(ρ, σ) ≤

√
1− F (ρ, σ) (1.36)
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CHAPTER 2

Representing Information

Much of what we’ve covered thus far is common ground for the entire field of quantum

information theory. We now begin introducing some uniquely “Shannon theoretic” ideas

and techniques - source coding in the present chapter and channel coding in chapter 3. We

begin by reviewing the classical cases as they will provide intuition and motivation for their

quantum analogs.

2.1 Classical Source Coding

Suppose we want to encode a series of signals for storage on a binary medium - such as a

computer’s hard disk. For sake of concreteness, we say that the signals are produced by a

source X which outputs individual symbols from an alphabet X according to the probability

distribution p(X). For now we limit ourselves to classical information sources with alpha-

bets containing a finite number of completely distinguishable symbols1. For example, the

source may output decimal digits, the Roman alphabet, or Hangul jamo. This is opposed

to quantum information sources, the alphabets of which generally contain indistinguishable,

superposed, and unclonable symbols.

Since our disk can only store zeros and ones we need an encoding function mapping the

source alphabet to sequences of binary, and a decoding function mapping binary sequences

back to the source alphabet. Source coding addresses the problem of constructing these

functions - often with the goal of representing the signals in a more efficient (i.e. compressed)

form than in which they were originally presented.

One very straightforward, but often inefficient, way to encode signals is to assign each ele-

ment of X a unique value between 0 and |X |−1. To ensure easy decoding, small values may be

padded with zeros so that all of the codewords have the same length. For example, the signals

from a source with an eight letter alphabet might be encoded as {000, 001, 010, 011, . . . , 111}.
Using this indexing method, the expected length of each codeword is exactly dlog |X |e bits.

Clearly this upper bounds the expected code length of any finite alphabet source - but as

1Continuous alphabet sources are commonly studied, but we exclude them here.
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Source signal
Codeword Decoded signal

Figure 2.1: Source coding of a classical signal. The encoding (En) and decoding (Dn) operators
are often inverses, in which case X̂n = Xn.

we will see in following section, we can make use of block coding and our knowledge of the

probability distribution over source signals to create codes with shorter expected lengths.

To understand how, we need to first introduce the concept of typical sequences. The

theory of typical sequences will allow us, following Shannon, to demonstrate a fundamental

limit on the compressibility of sources and will shed more light on why the entropy function

is a good measure of information.

2.1.1 Typical sequences

To gain intuition, let’s introduce a fictional unit, the JLB, defined as a book from Jorge Luis

Borges’ short story The Library of Babel. These books are four hundred and ten pages long,

forty lines to the page, and eighty characters to the line [Bor98]. Let’s say the alphabet

contains 32 characters, including spaces and punctuation. That makes 32(410∗40∗80) unique

JLBs each requiring something on the order of 6.56 million bits, or about 800 kilobytes of

ASCII text to uniquely index. Almost all such JLBs are gibberish, but of course all of last

week’s best sellers, every book you’ve ever read, and everything you’ve ever written would

also make an appearance somewhere in the mix (perhaps as multiple volumes, or with some

special characters stripped out).

Suppose we’re trying to compress a source, X, which outputs random JLBs. If p(X) is

uniform over all JLBs, then we can do no better than the indexing method described above.

But if p(X) is instead a suitable function of how many copies of the book were sold online

last week, we can uniquely identify each JLB we’re likely to encounter by its title, author,

and date of publication - no more than a few hundred bits. Even better, we might use the

book’s ISBN, only 34 bits!

In this example, the top sellers, all of the classics, and likely every book you’ve ever read,

are members of what we’ll soon come to know as the typical set, whereas the overwhelming
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majority of all possible JLBs belong to the atypical set.

An important thing to keep in mind is that the typical set is always defined with respect

to a probability distribution. The choice of number-of-copies-sold was not arbitrary, it was

an essential choice for us to be able to use the ISBN as a good code.

Formally, given a probability distribution, p(x), the ε-typical set of length n sequences,

A(n)
ε , is:

A(n)
ε =

{
(x1, x2, . . . , xn) ∈ X n :

∣∣∣∣∣− 1

n

n∑
i=1

log p(xi)−H(X)

∣∣∣∣∣ < ε

}
. (2.1)

The typicality of this set is due to the information theoretic analog of the weak law of

large numbers: the asymptotic equipartition property2. The AEP states that as n increases,

the average log probability of n independent and identically distributed (i.i.d.) symbols,

− 1
n

∑n
i=1 log p(xi), converges (due to the weak law of large numbers) to the expected log

probability, −E [log p(X)], which is exactly the entropy, H(X). This fact will form the

backbone of our proof of Shannon’s source coding theorem, as it effectively states that

approximately nH(X) bits are sufficient to represent any typical sequence.

The AEP allows us to make some other general statements about the properties of typical

sets. Most importantly we can bound both the size and the probability mass of a typical

set. We state these facts briefly here, without formal proof. Detailed explanations may be

found in [Cov06].

First we note that the probability mass of the typical set (the sum probability of its

members) can be made arbitrarily close to 1. Fix any δ > 0, the convergence guaranteed by

the AEP ensures that for sufficiently large n, the probability that an i.i.d. length n sequence

is δ-typical is greater than 1− δ.

Pr

{∣∣∣∣∣− 1

n

n∑
i=1

log p(xi)−H(X)

∣∣∣∣∣ < δ

}
≥ 1− δ (2.2)

Which implies that block coding can be used to push the probability of encountering an

atypical sequence arbitrarily close to zero.

The definition of typicality gives upper and lower bounds for the probabilities of individual

typical set elements. No sequence has probability less than 2−n(H(X)+ε), nor greater than

2−n(H(X)−ε). These element-wise probabilities can be used to determine bounds on the size

of the typical set. An upper bound is obtained by assuming that every element has minimal

probability, and that the sum of these probabilities is close to 1. Similarly, a lower bound is

2The presentation given here is very informal, see [Cov06] for a very readable, yet rigorous, treatment of
the AEP and typicality
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given by assuming that each element has maximal probability and that their sum probability

is only (1− ε). Therefore,

(1− ε)2n(H(X)−ε) ≤ |A(n)
ε | ≤ 2n(H(X)+ε) (2.3)

2.1.2 Shannon’s source coding theorem

Shannon used the theory of typical sequences in his groundbreaking work “A Mathematical

Theory of Communication” [Sha48] to place a fundamental limit on the compressibility

of sources. The theorem he derived is now known as Shannon’s source coding theorem (or

alternatively, for reasons which will be explained in chapter 3, as his noiseless channel coding

theorem).

One goal of source coding is to decrease the expected length of messages transmitted by

the source. The key word here is expected - the reason we’re able to compress the source at

all is because some messages are more likely than others. If we assign the shortest codes to

the most likely messages, then the expected length of a message should decrease. However,

the unlikely messages must either remain lengthy or they must fail to be decompressable3.

The source coding theorem states that for any δ > 0, H(X) + δ bits per symbol is an

achievable compression rate. This can be proved as follows.

Put members of the typical set in a one-to-one correspondence with the integers between

zero and 2nH(X). Assign each member of the atypical set a value in
[
2nH(X), 2n|X |

]
. The

codewords for typical (atypical) set members are obtained by prepending a 0 (1) to their

assigned value. The length of codewords is therefore nH(X) + 1 for typical sequences, and

n|X |+1 for atypical sequences. The expected length per symbol is obtained by dividing these

quantities by the block length, n, and taking the expectation with respect to the probability

that a sequence is typical:

(1− ε)
(
H(X) + 1

n

)
+ ε
(
|X |+ 1

n

)
= H(X) + ε (|X | −H(X)) + 1

n
(2.4)

For sufficiently small ε and large n (both of which are free parameters) the above quantity

is less than H(X) + δ.

Shannon also proved the converse theorem - that for any δ > 0, the compression rate of

H(X)− δ bits per symbol is not attainable. This can be seen by noting that any attempt to

3This is proved by invoking the pigeonhole principle. Specifically if we have n messages (pigeons), and
only m < n indices by which to address them (pigeonholes), then some indices must correspond to multiple
indices and decoding fails to be a proper function.
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index the typical set with fewer than nH(X) bits will leave some portion of typical sequences

uncoded. These uncoded sequences will receive code lengths longer than n(H(X) − δ) bits

and, unlike atypical sequences, their probability and contribution to the expected code length

will not be diminished by increasing n or decreasing ε.

The source coding theorem and its converse firmly establish H(X) as an appropriate

measure of the information content of classical sources. In the coming sections we will show,

by similar arguments, that S(X) plays a similar role for quantum sources.

2.2 Quantum source coding

Following closely in Shannon’s footsteps, Benjamin Schumacher introduced a theory of typi-

cal subspaces, a quantum source coding theorem, and the term “qubit” in [Sch95]. This work

opened the door for an entirely new perspective on how the quantum theory of information

should be structured. Rather than applying classical information theory to the probabil-

ity distributions described by quantum mechanics, Schumacher invented distinctly quantum

mechanical measures of information. These measures have allowed for the formulation of a

quantum theory of information distinct from, yet capable of subsuming, the classical theory.

2.2.1 Typical subspaces

With the theory of typical sequences in hand we can generalize fairly easily to their quantum

analog, typical subspaces.

Typicality for classical sources was defined for length n blocks of bits. Typicality for

quantum sources will similarly be defined for blocks of qubits - but we first need to specify

exactly what this means.

One of the major conceptual innovations of [Sch95] was to realize that arbitrary quantum

states could be encoded on sequences of qubits in much the same way which any classical

message can be encoded on bits. We can therefore assume that a quantum source, M, only

outputs qubit states. Though, unlike a classical source, it is not constrained to orthogonal

states. M is assumed to output any one of k signal states, |ai〉, according to the probability

distribution p(ai). This is described by the density matrix ρ =
∑k

i=0 p(ai) |ai〉 〈ai|.
Each signal from the source is assumed to be independent and identically distributed.

This implies that a block of n qubits - a sample from Mn - may be represented as a prod-
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uct state |α〉 = |α1〉 |α2〉 . . . |αn〉, and the probability of α is given by the product of the

probabilities of its subsystems, p(α) = p(α1)p(α2) . . . p(αn). We describe samples from Mn

by a density matrix, which is conveniently given by the product of the single signal density

matrices, ρn = ρ1 ⊗ ρ2 ⊗ · · · ⊗ ρn.

ρn gives a complete statistical description of samples from Mn, but it is still a bit more

unwieldy than the simple collection of alphabet-and-probability-distribution which describe

classical signal blocks. There is, however, a nice reduction from ρn to something very similar

to this classical object. We note that the eigenvalues of ρn form a probability distribution on

the eigenstates of ρn. This is plainly seen by considering an eigenvalue decomposition of the

state: ρn =
∑

i λi |i〉 〈i|. Density matrices are required to be postive semi-definite, and to

have unit trace, so their eigenvalues must be positive real numbers which sum to 1;
∑

i λi = 1.

This convex set satisfies all of the formal requirements of a probability distribution, and we

can see, from our discussion of measurement, that λi has an operational definition as the

probability of obtaining result |i〉 after a measurement in the eigenbasis.

Assigning a classical letter to each eigenstate, we can treat the quantum system as if

it were a classical source. A quantum state will be considered typical if the sequence of

eigenstates describing it is typical.

Schumacher notes [Sch95] that due to the product nature of ρn, the eigenstates are given

by the Kronecker product of the eigenstates of each subsystem. Similarly, the eigenvalues

are the scalar product of the eigenvalues of the subsystems.

As we saw in section 1.3 the von Neumann entropy of a state, S(ρ) = Tr (ρ log ρ), is most

easily calculated when we know an eigenvalue decomposition of the state, ρ =
∑

x λx |x〉 〈x|.
In this case, S(ρ) = H({λx}) = −

∑
x λx log λx.

With the equivalence between Shannon and von Neumann entropies in mind, we may now

give a definition of quantum typicality almost identical to the classical case. Here, λ(ρ, i) is

the ith largest eigenvalue of ρ.

T (n)
ε =

{
ρ :

∣∣∣∣∣− 1

n

n∑
i=1

log λ(ρ, i)− S(ρ)

∣∣∣∣∣ < ε

}
(2.5)

This definition is technically correct, but leaves something to be desired if it is to be used

in practice. Consider, for instance, that while superposition states may be typical, we cannot

directly test for their typicality (which would involve measuring each subsystem) without

destroying the state. For this reason we need our typicality test to be gentle.

In all measurements there is a trade-off between the amount of information gained and

the level of disturbance caused to the system - the greater the information gain, the greater

the disturbance. This has been proven formally in [Win99]. The gentle operator lemma
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states that given a state ρ and operator Λ if Tr (ρΛ) ≥ 1− λ, then

‖ρ−
√

Λρ
√

Λ‖1 ≤
√

8λ (2.6)

Fortunately for us almost all i.i.d. product states are typical, and so we gain very little

information by determining typicality. For large enough n we are able to perform typicality

measurements which cause little disturbance to the measured system.

To perform such a measurement we need to first identify the set of ε-typical quantum

states with the subspace in which they lie: the ε-typical subspace. A projector into this

subspace is constructed by summing over the density matrices of all ε-typical product states:

Λ(n)
ε =

∑
ρ∈T (n)

ε

ρ =
∑
ρ∈T (n)

ε

|α1〉 〈α1| ⊗ |α2〉 〈α2| ⊗ · · · ⊗ |αn〉 (2.7)

We can now make some general claims about the properties of typical subspaces. Proofs

are omitted but may be found in [NC00].

1. As n increases, the probability that a i.i.d. product state is typical converges to 1.

Specifically, for all ε, δ > 0 there exists an n0 such that for all n ≥ n0:

Tr
(
Λ(n)
ε ρΛ(n)

ε

)
≥ 1− δ. (2.8)

By the completeness relation, the orthogonal (atypical) subspace, has vanishing weight.

Tr
(
(I − Λ(n)

ε )ρ(I − Λ(n)
ε )
)
< δ. (2.9)

2. The dimension of the typical subspace is approximately 2n(S(ρ)±ε).

2.2.2 The quantum noiseless coding theorem

The quantum noiseless coding theorem generalizes Shannon’s noiseless channel coding theo-

rem (section 2.1.2) to quantum sources. Like Shannon’s theorem, it places upper and lower

bounds on the compressibility of a source, but there are some fairly substantial differences

between classical and quantum sources which complicate the task. For one, as we saw in

1.2.8, quantum sources cannot be copied - they can’t even necessarily be distinguished. So

we will not be able to say that a state after compression and subsequent decompression is
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exactly the same as the original. Instead we will bound the fidelity between initial and final

states.

Doing so introduces an element of error which was not present in the classical case.

Note, however, that many proofs of Shannon’s source coding theorem (specifically when the

theorem is referred to as the noiseless channel coding theorem) bound an error rate instead

of the expected code length. These are entirely equivalent - one can enforce a code length

of nH(X) bits, allowing for only 2nH(X) sequences to be properly decoded. The remaining

sequences are mapped to arbitrary code words of length nH(X), preserving the expected

code length but introducing erroneous decodings. A proof of this form will show that the

error rate may be made arbitrarily small in the limit of large block lengths.

Schumacher’s proof of the quantum source coding theorem is more along these lines.

Consider a source, M , which outputs independent and identically distributed signals accord-

ing to a distribution p(M). The goal is to block encode these signals using as few qubits

per signal as possible - we are trying to compress the source in such a way that it can be

decompressed with high probability. Encoding and decoding will be represented by unitary

operators E : H⊗nQ → H⊗nQ and D : H⊗nQ → H⊗nQ . Notice that these functions return states

encoded on Hilbert spaces of the same dimension as their inputs. While the information

content of the signals will be stored on some number of qubits m < n, unitarity restricts us

from “throwing out” qubit systems. To circumvent this, we require that En and Dn leave

the last n − m qubits in a standard state such as |0〉. The assumption is then that these

qubits are discarded after encoding and that ancilla qubits in the |0〉 state are added prior

to decoding. With this assumption, it makes sense to speak of En and Dn as compression

and decompression functions.

Let ρ′ be Bob’s estimate of Alice’s input; ρ′ = Dn(En(ρ)). This representation of ρ is

ε-faithful if the fidelity4 is greater that (1− ε); F (ρ, ρ′) > 1− ε.
Fix δ > 0. Provided that S(ρ) + δ qubits are available to encode each signal, then for

any ε > 0 there exists an N0 such that for all N ≥ N0 it is possible to transmit blocks of N

signals with fidelity F > 1 − ε. This is justified by the fact that, as N becomes large, the

probability mass concentrated on the typical subspace approaches 1, i.e. for some N0 and

all N greater, the probability mass concentrated outside the typical subspace drops below ε

The converse proof was also given in [Sch95]. It states that the bound given above is in

fact tight. Given only S(ρ)− δ qubits to encode each signal the achievable fidelity for large

N is F < ε.

4The definition of fidelity given in section 1.5.2 actually predates Schumacher’s noiseless coding theorem.
Schumacher’s fidelity, for an initial state πa and final state wa, is given by

∑
a p(a)Tr (πawa). But our fidelity

measure is also sufficient.
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Schumacher’s source coding theorem gives a wonderful operational definition to the von

Neumann entropy S(ρ). Like its classical counterpart, the Shannon entropy, S gives a tight

classification of the number of qubits needed to transmit a state from one party to another.

If more than S(ρ) qubits are available per state, then the state may be transmitted with

fidelity arbitrarily close to 1. However, if less than S(ρ) qubits are available, that fidelity

will inevitably approach zero.
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CHAPTER 3

Channels

The previous chapters have demonstrated some general techniques for quantifying and rep-

resenting information, but this presentation has been largely idealized and has ignored dy-

namic systems. Ultimately, we want to understand how quantum information changes over

time, and we want a single mechanism capable of describing any evolution. We may wish

to describe the free evolution of a closed or open quantum system, the action of gates or

measurement apparatuses, or the transmission of quantum information in a communication

setting. In analogy with concepts of classical information theory, we will call this mechanism

a quantum channel.

In the classical theory a channel is simply any medium through which information may

be transmitted - a fiber-optic line or radio frequency for transmission through space; an

optical disc or photographic film for storage over time. A quantum channel may be very

similar; there will be a sender and a receiver (who we typically call Alice and Bob), and there

will be some model of how the information changes during transmission. The later might be

intentional evolution, as in the case of a gate in a quantum computer; unintentional noise,

as when the principal system interacts with an environment; or even adversarial, in the case

of a third party who attempts to read or disrupt the information.

The intricacies of quantum mechanics, such as unitary evolution and its consequences like

the no-cloning theorem, cause noise to be more nuanced in the quantum domain than in the

classical. Classical noise can often be thought of as being independent from the transmission

and the impact which classical signals have on their environment may often be completely

ignored. In contrast, quantum signals and their environments evolve together and can be

conceptualized independently only in the most idealized settings. Schumacher, in [Sch96],

states that “[t]his illustrates very clearly a general principle: In quantum information theory,

noise is exactly information exchange with an external system.”

We begin now by introducing the concept of quantum operations, which will allow us to

describe the evolution of open systems (ones in which an environment is present).
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3.1 Quantum Operations

In section 1.2.7 we briefly examined the evolution of closed systems. Such a discussion is

vital in developing an understanding of how it is possible to encode information, and even

perform computation, entirely on quantum states. Yet closed systems rarely, if ever, exist in

the real world - in order to understand how quantum information processing can be made

practical, we will need to introduce some new mathematics for describing the evolution of

open systems.

Within the context of quantum Shannon theory we are primarily concerned with how

the introduction of the environment affects our ability to reliably communicate information

(quantum or classical). In general, these interactions will manifest as noise and will appear

as non-unitary perturbations of the principal system. The focus of this section is to define a

way in which these interactions may be modelled.

One might recall from basic quantum mechanics that the time evolution of all quantum

systems is unitary. As such, the principal system only seems to undergo non-unitary evolu-

tion in the presence of noise because we have only considered its reduced dynamics - we have

ignored the evolution of the environment. Therein lines an immensely important idea; the

evolution of any system, no matter how chaotic, may be described as the reduced dynamics

of the unitary evolution of a larger system. Invoking such a larger system is referred to,

colloquially, as “going to the church of the larger Hilbert space.” More formally the act is

known as a Stinespring dilation, or Stinespring extension.

3.1.1 Stinespring’s dilation theorem

Stinespring’s theorem is a result from functional analysis which characterizes what are known

as completely positive maps. As it turns out, all quantum channels are described by com-

pletely positive trace preserving (CPTP) maps which is really just to say that if the map’s

input is a density matrix its output will be as well. The map must be completely positive in

order to ensure that the acted upon density matrices’ eigenvalues remain positive; and the

map must be trace preserving in order to preserve probabilities1.

1The CPTP restriction has been questioned on several occasions. Pechukas, in [Pec94], notes that the
map describing the reduced dynamics of a system, ρS , need only be completely positive if the system is
initially decoupled from the environment (i.e. ρSE = ρS ⊗ ωE). While such decoupling is a reasonable in
the idealized quantum information setting, it is not easily accomplished experimentally. As such, Pechukas
suggests that the positivity constraint be dropped. Alicki notes, [Ali95], that doing so introduces additional
difficulties, and that positivity can be preserved by carefully modeling the process which prepares ρSE . We
will assume that the systems we study are initially decoupled from the environment - the question of how
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The theorem [Sti55] states exactly what we have already covered informally: if a map

µ(ρ) is completely positive for states ρ on a Hilbert space H, then it has a representation as

µ(ρ) = V k(ρ)V †. The matrix V is a unitary operation on the larger Hilbert space K; k(ρ)

lifts ρ from H to K. k(ρ) might be, for instance, k(ρ) = ρ⊗ I, where the dimension of I is

dim K/dim H.

We can now describe the action of an arbitrary channel E . Consider a state ρ on system

S which is coupled to an environment, R, the action of E on ρ is given by:

ρS → E(ρS) = TrR
(
V SR(ρS ⊗ ωR)V †SR

)
(3.1)

Wherein the quantity traced over is a Stinespring dilation of E .

This technique merely shows the existence of V SE, there still seem to be some obstacles

to still overcome before we can actually put it to use. For one, we have not yet bound the

size of the larger Hilbert space on which V will act. Immediately it seems that doing so

may be difficult, as the environment can be effectively infinite dimensional - do we therefore

need to leave behind the simple finite structures we have used up until now? Fortunately,

the answer is no. A description of the environment of no more than d dimensions (i.e. the

joint system HS ⊗HR has d2 dimensions) is sufficient to model any possible evolution of the

principal system. We will easily see why if we consider the operator sum representation of

quantum operations.

3.1.2 Operator sum representation

Building on the result of Stinespring, Choi gave an alternate characterization of the com-

pletely positive maps, [Cho75], which states that E is completely positive if and only if it

admits a representation as:

E(ρ) =
M∑
k

AkρA
†
k. (3.2)

This is known as the operator sum or Kraus representation provided that the Kraus operators

(the Ak) satisfy
M∑
k

AkA
†
k = I. (3.3)

This last condition ensures that the map is trace preserving. Any physical evolution of a

principal system which is initially decoupled from its environment may be written in this

best to model systems for which this is not the case is still the subject of current research.
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form.

The operator sum representation is closely related to the representation given by dilation.

In fact we can derive the operator sum representation by explicitly calculating2 the partial

trace in 3.1. For now we assume that ρS is pure, ρS =
∣∣φS〉 〈φS∣∣. We are free to purify the

environment, and choose its basis, so we let ωR =
∣∣0R〉 〈0R∣∣.

E(ρ) = TrR
(
V SR(ρS ⊗ ωR)V SR†)

= TrR
(
V SR(

∣∣φS〉 〈φS∣∣⊗ ∣∣0R〉 〈0R∣∣)V SR†)
=

M∑
k

〈
kR
∣∣V SR(

∣∣φS〉 〈φS∣∣⊗ ∣∣0R〉 〈0R∣∣)V SR† ∣∣kR〉 (3.4)

Letting Ak =
〈
kR
∣∣V SR(

∣∣φS〉 ⊗ ∣∣0R〉) we recover the operator sum representation for pure

states. Since ρ may be written as a convex combination of pure states,
∑

i pi |φi〉 〈φi|, and E
is a linear operator, we recover the operator sum representation for arbitrary mixed states

by E(ρ) = E (
∑

i pi |φi〉 〈φi|) =
∑

i piE(|φi〉 〈φi|).
A treatment similar to the above as well as a more formal proof may be found in [Sch96].

For a d dimensional system ρS the number of Kraus operators, M , specifying its evolution

need be no more than d2 - intuitively, this is a sufficient number to alter each element of the

d× d matrix representation of ρS individually.

3.2 Types of channels

The noiseless channel idA→B takes states on system A to system B with perfect fidelity.

We will sometimes denote a general noisy channel by NA→B, however since noise can only

come through interaction with an environment, it is often more appropriate to deal with the

channel’s Stinespring extension UA→BEN . The later makes it clear that the information which

was not conveyed to Bob has been retained by the environment (or perhaps by an adversary,

Eve), not destroyed.

2Some notational liberty is taken in equation 3.4, see section 1.2.5 for the actual explicit calculation of
the partial trace.
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CHAPTER 4

Channel Capacity Results

In section 2.1 we were concerned in some sense with how “densely” we could represent

messages from a source, or equivalently, with the amount of redundancy we could remove

from messages while retaining the ability to read them later. The results were given under

the assumption that the data would be stored in a completely noiseless form in between

its initial encoding and eventual decoding. Source coding results can also be seen through

the lens of chapter 3 - they are statements about the capacity of noiseless channels. In the

present chapter we drop the assumption that channels and storage devices are noiseless so

as to get one step closer towards examining the communication capacity of real devices.

In the classical information theory, Shannon’s noisy channel coding theorem more or less

opens and closes the book on what can be said about the capacity of a noisy channel shared

between two parties. No similar claim can be made about the existing theorems for quantum

channels. There are a plethora of capacity results and as of yet no single formula has been

able to wrangle these together. We will encounter a few - though by no means all - of these

results in this chapter, specifically: the classical capacity of a quantum channel (C), the

entanglement assisted capacity (CE), and the quantum capacity (Q).

C gives the asymptotic rate at which classical information may be transmitted over a

noisy quantum channel. One might expect this to be relatively straightforward to classify,

yet it is still not fully understood, and a recent non-additivity result from Hastings [Has09]

shows that we may still have a long way to go before it is.

On the other hand, the examination of CE - the rate at which classical information may be

communicated between parties who are assisted by an unlimited share of entanglement - has

given some of the most definitive results in the field. The presence of unlimited entanglement

so dramatically simplifies the relations between channels that CE can be seen as the only

parameter of interest [BSST01]. The so-called quantum reverse Shannon theorem states,

among other things, that any two channels with equivalent CE may simulate each other’s

action on i.i.d. inputs with perfect asymptotic efficiency [BDH+09].

The quantum capacity, Q, gives the asymptotic rate at which quantum information may

be transmitted over a channel. Much progress has been made towards understanding this

quantity, but the amount which is still unknown only underlines the fact that quantum
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information theory is still in its formative years - there is much we still do not know about

even the most basic properties of quantum channels. Recently [SY08] showed, quite counter

intuitively, that there exist channels which have zero capacity when used on their own, but

which have positive capacity when combined with each other. Such results show that the

quantum capacity cannot be said to characterize a channel outright - it must be considered

with respect to the context in which the channel is to be used.

With the exception of the entanglement-assisted capacity, the results we present here

apply only to the capacity of a channel to transmit information from i.i.d. sources. The

effect which entangling the inputs to a channel may have is still very poorly understood. To

clarify the types of inputs to which a capacity result applies we will mark each capacity with

a superscript. C(1) and Q(1) indicate the classical and quantum capacities for a channel given

i.i.d. inputs. By extension C(n) is the classical capacity of a channel which allows arbitrary

entanglement within length-n input blocks, but for which each separate length-n block must

be i.i.d. A major open problem is the additivity of the classical capacity, in other words, is

C(n)(N⊗n) = nC(1)(N ). The previously mentioned result by Hastings, shows that our best

known measure for the classical capacity is non-additive, but it is still unknown whether an

additive measure might be found.

So, with the caveat in mind that these are likely not the final word on the subject, we

now present some of the known capacity results.

4.1 Classical capacity of a noiseless quantum channel

The field got a bit ahead of itself with Schumacher’s noiseless channel coding theorem (sec-

tion 2.2.2), because while it gives the quantum capacity of the noiseless channel, it leaves

open the seemingly simpler problem of that channel’s classical capacity. Hausladen, Jozsa,

Schumacher, Westmoreland and Wootters got around to proving this result in [HJS+96]. We

present this here, rather than in the source coding section, as it was this result which lead

to the proof of the Holevo-Schumacher-Westmoreland theorem which gives the C(1) capacity

of a noisy quantum channel.

One of the niceties we take for granted when analyzing classical channels is that the

symbols of their alphabets are perfectly distinguishable, and for that matter, that any un-

certainty about the message is introduced by noise during transmission. These assumptions

reduce the problem of determining the channel’s classical capacity to determining how much

one can compress its input.

Schumacher’s source coding scheme allows us to do something similar for arbitrary quan-
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tum states - it tells us how much we can compress these states, and therefore tells us the

rate at which we can send them over a noiseless channel. But it is not immediately obvious

what this result says about the ability of a quantum channel to communicate purely classical

information. How much classical information can we encode on a single qubit?

Recall that C, the classical capacity of a classical channel, is given by Shannon’s noisy

channel coding theorem which states that C is equal to the mutual information between the

channel’s inputs and its outputs after an optimization over input distributions.

C = max
p(X)

I(X;Y ) = max
p(X)

(H(X)−H(X|Y )) . (4.1)

Our goal is to define a similar term for quantum channels. Alice is still trying to send

classical information, but now she and Bob are connected by a quantum channel, and they

have a quantum encoder and decoder respectively.

Alice will use her encoder to assign some set of classical signals to the states {ρx}. With

probability p(X) she will attempt to send the classical message x by inputting {ρx} to the

channel. We therefore represent the channel’s inputs as the mixed state ρ =
∑

x p(x)ρx.

Each use of the channel, like the classical case, is independent and identically distributed -

p(X) does not change, and we do not allow multiple inputs to the channel to be entangled

with each other.

We can no longer assume that individual letters of Alice’s channel alphabet ({ρx}) are

distinguishable, and therefore we cannot assume that there exist decoding operations capable

of extracting n bits of information from a sample with von Neumann entropy n. The amount

of information which Bob can extract is termed the accessible information. If Bob uses the

best possible decoding scheme, the accessible information is equal to the mutual information

between Alice’s classical inputs and Bob’s decoded outputs, I(X; X̂).

Certainly the accessible information will never exceed the von Neumann entropy of the

source, and we will shortly see that for a noiseless channel there are input distributions and

channel alphabets for which S(ρ) is attainable. However, a celebrated theorem by Holevo [?]

gives an even better upper bound which will also be useful in the noisy channel scenario:

I(X; X̂) ≤ S(ρ)−
∑

x p(x)S(ρx).

The term on the right hand side is referred to as χ, or the Holevo information.

χ = S

(∑
x

p(x)ρx

)
−
∑
x

p(x)S (ρx) (4.2)

The result of Hausladen et al. , [HJS+96], shows that the Holevo information is an

attainable communication rate per use of the noiseless channel. The Holevo information itself
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is maximized by a uniform distribution over an orthonormal set of pure states. For example,

for a qubit channel, Alice’s best encoding scheme is to send |0〉 and |1〉 each with probability

0.5. Bob’s optimal decoding operator is a projective measurement in the standard basis.

The proof in [HJS+96] shows that the Holevo information gives the correct capacity in the

more general case where Alice is not free to choose the alphabet (i.e. for channel alphabets

of pure, yet non-orthogonal states). We have covered most of the mathematical machinery

that is needed to prove this (typical subspaces, block encoding/decoding operations), but

the proof technique itself (random coding) has been superseded by newer techniques so we

will not review it here.

We can now more formally state the C(1) capacity of a noiseless qudit channel for which

Alice chooses the channel alphabet.

C(1)(idA→BD ) = χmax(id
A→B
D )

= max
{p(a),ρa}

S(ρ) where ρ =
∑
a

p(a) |ψa〉 〈ψa|

= S

(
1

D

D∑
d=0

|ψd〉 〈ψd|

)
= logD bits

(4.3)

This is, perhaps, an unsurprising result, but it is an important one nonetheless. One-way

noiseless quantum channels provide no improvement over noiseless classical channels for the

transmission of classical information.

Hausladen et al. conjectured that the classical capacity of a noisy quantum channel would

also be given by the χ quantity. The proof of which is now known as the Holevo-Schumacher-

Westmoreland (HSW) theorem.

4.2 Holevo-Schumacher-Westmoreland Theorem

Building off the conjecture of [HJS+96], proofs of the classical capacity of a noisy quantum

channel were given independently by Holevo in [Hol98], as well as Schumacher and West-

moreland in [SW97]. Both use notions of typicality and random coding techniques to answer

the conjecture in the affirmative - the Holevo information gives the C(1) capacity for a noisy

quantum channel.

The proofs of this theorem are somewhat too involved to present here, they both involve

rigorous definitions of typicality and an application of random coding. Intuitively, random
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coding bounds Bob’s expected error rate over all coding schemes. If a random code of rate

R is expected to have an error rate of pe, then a simple modification of any code, namely

one in which the highest error rate codewords are deleted, can be made to have lower error

rate. These random coding proofs show that in the limit of large block lengths, pe can be

pushed to zero for all codes with rates bounded above by the Holevo information.

The end result is a characterization of the C(1) capacity in terms of the Holevo information

(we will also refer to this as the Holevo capacity).

C(1)(N ) = χmax(N ) (4.4)

It was an open question until very recently whether or not the Holevo χ quantity was

additive, in other words, whether χmax(N ⊗ N ) = χmax(N ) + χmax(N ). If this were the

case, then the χ quantity would give a complete description of the classical capacity; it would

settle the conjecture C
?
= C(1) in the affirmative.

The recent result by Hastings shows that the χ quantity and two other quantities known

as the entanglement of formation and the minimum output entropy are not additive.

As a result we find ourselves without a general formula for the classical capacity of a

quantum channel. The best known formula is given by the regularized Holevo capacity.

C = lim
n→∞

1

n
C(n)(N⊗n) (4.5)

4.2.1 Example: Classical Capacity of the Depolarizing Channel

The regularized Holevo capacity cannot generally be computed. That said, the Holevo

capacity has been shown to be additive for a limited set of channels, and as such we can

compute exact classical capacities for those channels.

One nice example of such a channel is one which “depolarizes” its input. With proba-

bility p the depolarizing channel produces a random output, and with probability (1− p) it

transmits the input state with perfect fidelity. Equivalently, one may think of this channel

as randomly applying one of the four Pauli operators {I,X,Y,Z}, with probability p.

As given in [NC00] and elsewhere, this can be conveniently written in the operator-sum

form,

E(ρ) = (1− 3p

4
)ρ+

p

4
(XρX + YρY + ZρZ) (4.6)

If we abandon the operator sum representation (which is mostly useful to show that this

is a valid physical channel), we can recover the original interpretation of the depolarizing
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channel as one which probabilistically randomizes its output. We note that

1

4
(ρ+ XρX + YρY + ZρZ) =

I

2
. (4.7)

From which we may rewrite equation 4.6 as

E(ρ) = (1− p)ρ+
p

2
I. (4.8)

The HSW theorem states that the C(1) capacity of the depolarizing channel should be

given by a maximization over the Holevo information of the output states.

C(1)(E) = χmax(E) = S (E(ρ))−
∑
i

piS(E(ρi)) (4.9)

We can assume that Alice inputs pure states to her channel, so the ρi are equivalently

represented by |ψi〉 〈ψi|. Consider the action of E on a pure state |ψi〉,

E(|ψi〉 〈ψi|) = p |ψi〉 〈ψi|+ (1− p)I
2

(4.10)

The eigenvalues of the two matrices are respectively {p, 0} and { (1−p)
2
, (1−p)

2
}. Since the two

matrices commute, the eigenvalues of their sum are { (1+p)
2
, (1−p)

2
}. Note that this is entirely

independent of the choice of |ψi〉.
The entropy of E(ρi) is therefore1 H

(
1+p
2

)
for all pure ρi. As such we’ve reduced the

problem of determining the depolarizing channel’s capacity to calculating:

χmax(E) = max
ρ

S (E(ρ))−H
(

1 + p

2

)
(4.11)

A uniform distribution on any orthonormal set of pure states (such as |0〉 , |1〉) will serve to

maximize this quantity, as E( I
2
) = I

2
, and S( I

2
) = 1. Therefore, the classical capacity of the

depolarizing channel with parameter p is

C(1)(E) = 1−H
(

1 + p

2

)
(4.12)

Since this depends only on p and not the input state, this is the general classical capacity,

C, as well.

1We adopt the convention here that the Shannon entropy of a real number, H(p), is defined to be the
Shannon entropy of a Bernoulli random variable with weight p, i.e. H({p, 1− p})
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4.3 Classical Capacity of an Entanglement-Assisted Quantum Channel

What if, in addition to a noisy channel, Alice and Bob share a pool of entangled qubits. Can

they use these to enhance the capacity of their channel? How might such an entanglement-

assisted capacity relate to the unassisted capacity? These questions, and their answers, have

lead to some of the most definitive results in the field of quantum Shannon theory.

It was conjectured in [BSST01], and subsequently proved in [BDH+09], that in the pres-

ence of unlimited shared entanglement, the only parameter needed to completely classify

a quantum channel is its entanglement assisted classical capacity - if CE(N1) ≥ CE(N2),

then N1 may be used to simulate N2. This result is known as the quantum reverse Shannon

theorem.

The entanglement assisted classical capacity of a quantum channel is given by a max-

imization of the quantum mutual information between that channel’s inputs and outputs

[BSST01].

CE = max
ρ

S(ρ : N (ρ))

= max
ρ

H(ρ) +H(N (ρ))−H((NQ→Q′ ⊗ IR)ΦQR
ρ )

(4.13)

Remarkably, this formula is additive CE(N⊗n) = nCE(N ), and therefore completely

characterizes the entanglement assisted capacity of any channel - there is no need to regularize

the expression.

The presence of entanglement so dramatically simplifies the relationships between the

capacities that we can now even state a precise bound on the quantum capacity of an

entanglement-assisted channel. The proof relies on the teleportation and superdense coding

protocols which we will encounter more formally in chapter 6. For now it suffices to mention

that quantum teleportation [BBC+93] allows for the noiseless transmission of an arbitrary

qubit in exchange for one qubit of entanglement and two bits of classical communication,

and that superdense coding [BW92] allows for two classical bits to be communicated via

the noiseless transfer of a single maximally entangled state. Both protocols are known to

be optimal, which implies that the entanglement assisted classical capacity must be exactly

twice the entanglement assisted quantum capacity, CE = 2QE.
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4.4 Quantum Capacity

The quantum capacity of a noisy quantum channel is another area in which there is still room

for considerable improvements over known results. Lloyd [Llo97], Shor, and Devetak [Dev03],

have all given proofs of the Q(1) capacity with increasing levels of rigor. All of these find that

the Q(1) capacity is given by the coherent information, a term introduced by Schumacher

and Nielsen in [SN96].

The coherent information has quickly become one of the most important quantities in

quantum information theory. It shares many similarities with the classical mutual informa-

tion, and appears in similar circumstances. For instance, it was shown in [SN96] that the

coherent information obeys a data processing inequality.

In some sense, the coherent information measures of how well the distinctly quantum

attributes of a system are preserved under evolution. Formally, the coherent information is

given by

I(A〉B)ρ = −S(A|B) = S(B)− S(A,B) = S(B)− S(E). (4.14)

In order to apply this to a quantum channel, it is most helpful to express the action of the

channel, on an input ρ, as a unitary transformation, U , on the purified state ρA⊗|0〉 〈0|E. The

coherent information can then be evaluated on the reduced states of σBE = UρA⊗|0〉 〈0|E U †

as S(B)σ − S(E)σ.

Maximizing the coherent information in this form over all input states, we obtain an

expression for the Q(1) capacity as

Q(1) = max
ρ

(S(B)σ − S(E)σ) . (4.15)

It has been known for some time that the coherent information is not additive [DiV98],

except for in the case of a limited set of channels known as degradable quantum channels

[DS05] [CRS08].

As with the classical capacity, we can define a regularized formula for the quantum

capacity,

Q = lim
n→∞

1

n
Q(n)(N⊗n), (4.16)

which is additive, i.e. Q(N⊗k) = kQ(N ). However, there is no efficient way to calculate Q

for general channels.

For some time researchers believed that any gap betweenQ(1) andQ was likely to be small,

but Smith and Yard have shown [SY08] that this gap may be made arbitrarily large via the

combination of zero capacity channels. There exist channels for which Q(N ) = Q(M) = 0
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but for which Q(N ⊗M) > 0, and for which Q(N⊗n ⊗M⊗n) increases with n. Studying

this bizarre “superactiviation” effect may lead to profound new insights, but as of yet this

effect only makes it all the more clear that we still have much to learn about the quantum

capacity.

4.4.1 Example: Quantum capacity of the erasure channel

The ε-quantum erasure channel (ε-QEC) takes qubits as input and noiselessly transmits

them with probability (1− ε). With probability ε it outputs an erasure state which indicates

to the recipient that the input was “lost” along the way. The erasure state |2〉 is orthogonal

to both |0〉 and |1〉, so it is very easy to calculate the density matrices for both Bob’s system

and the environment following Alice’s use of an ε-QEC.

ρB = (1− ε)ρA + ε |2〉 〈2| ρE = ερA + (1− ε) |2〉 〈2| (4.17)

Where ρA is Alice’s input.

Assuming that the environment starts in the pure state |2〉 the joint ABE system can

be seen to be pure which allows us to compute the coherent information as:

I(A〉B) = −S(A|B)ρ = S(B)ρ − S(E)ρ (4.18)

The quantum capacity of the ε-QEC is given by maximizing the coherent information

over all input states. In this case the maximum is given by sending a completely mixed state

through the channel. Note that this is equivalent to sending one member of a fully entangled

pair through the channel.

Alice generates a Bell state locally, ρRA = |Φ+〉 〈Φ+|RA. She will hold on to the R system

and input TrR
(
ρRA

)
= ρA = I/2 to the channel.

Following Equation 4.17, this gives us

ρB = (1− ε)(I/2) + ε |2〉 〈2| ρE = ε(I/2) + (1− ε) |2〉 〈2| , (4.19)

or in matrix form

ρB = (1− ε)


1
2

0 0

0 1
2

0

0 0 0

+ ε

0 0 0

0 0 0

0 0 1

 ρE = ε


1
2

0 0

0 1
2

0

0 0 0

+ (1− ε)

0 0 0

0 0 0

0 0 1

 (4.20)
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The von Neumann entropy, like the classical Shannon entropy, is a convex function,

therefore,

S(ρB) = (1− ε)S(I/2) + εS(|2〉 〈2|) (4.21)

Pure states have zero entropy, so we only need to calculate S(I/2). Since this matrix is

diagonal, the von Neumann entropy is equal to the Shannon entropy of its diagonal entries.

H({1
2
, 1
2
}) = 1, so we have our result, ρB = (1−ε). An identical argument shows that ρE = ε.

With these quantities in hand we can now calculate the coherent information and the

quantum capacity.

Q(ε−QEC) = S(A〉B)ρ = S(B)ρ − S(E)ρ = 1− 2ε (4.22)

Which corresponds exactly with the result given by Bennett et al. in [BDS97]. Those

researchers gave an alternative description of the ε-QEC’s quantum capacity based on argu-

ments from [BDSW96]. Imagine that for ε ≥ 1
2

the QEC has a positive quantum capacity.

This implies that Bob is able to reconstruct, with high fidelity, Alice’s original input state

from fewer than half of the transmitted qubits. In fact, if the channel really has positive

capacity, it makes no difference which portion of the transmitted qubits he receives. By

claiming that the ε-QEC has positive capacity, we are implicitly claiming that there exists

a scheme by which Bob can recover Alice’s n qubit message from any subset of her message

of size approximately (1− ε)n.

This cannot be true as it immediately gives rise to a scheme for cloning arbitrary quantum

information. We imagine that the εn “erased” qubits were actually intercepted by a third

party, Charles. Assuming that Bob can reconstruct Alice’s message from (1 − ε)n qubits

implies that, for ε ≥ 1
2
, Charles can as well - violating the no-cloning principle of section 1.2.8.

4.4.2 The effect of a classical side channel

Can Alice and Bob boost the quantum capacity of their channel through the use of a classical

side channel?

First the bad news, in [BDSW96] it was shown that a one-way classical side channel

from Alice to Bob does not increase the quantum capacity of the quantum channel; Q1 = Q.

However, there are instances in which two-way classical communication can enhance the

quantum capacity. The previous example of the ε-QEC is one such case.

Notice that Bob always knows whether or not the source signal has been erased - if it has,

he receives a |2〉 state which is orthogonal to both of the source letters. So, if Alice and Bob
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share a two-way classical channel, Bob may signal to Alice which qubits he received. Alice

then ignores the εn lost qubits, and is left with a pool of (1 − ε)n qubits which she knows

are maximally entangled with Bob’s system. With a classical side channel at her disposal,

Alice has everything she needs to perform the teleportation protocol, and as such, she can

use each of her known-to-be-good qubits as single-serving noiseless channels. This implies

that the Q2 capacity of the ε-QEC is (1− ε) - a result which perfectly matches the classical

result for the classical erasure channel.

4.5 Quantum data processing inequality

Regardless of the doubt the last sections may have just cast on the accuracy of the coher-

ent information as a measure of quantum capacity, it has several properties that make it

attractive none the less. Notably, it allows for the statement of a quantum data processing

inequality analogous to that found in classical information theory.

In the classical theory, the data processing inequality states that if

X → Y → Z (4.23)

is a Markov chain (i.e. each state is conditionally independent of all but the previous state

so that the joint distribution may be written p(X, Y, Z) = p(X)p(Y |X)p(Z|Y )), then the

mutual information across operations must be non-increasing

H(X) ≥ I(X;Y ) ≥ I(X;Z). (4.24)

Intuitively, one may think of this as stating that post-processing of Y may not increase the

information Y contains about X. This is not to say that post-processing cannot make it

“easier,” in terms of say, the number of CPU cycles required to extract the information

contained in Y . The data processing inequality simply states that post-processing may not

increase the correlation between X, and Y .

An analogous claim about post-processing of quantum states sent through a channel.

Consider two successive evolutions, EA→B and FB→C , so that,

ρA
E−−−→ ρB

F−−−→ ρC (4.25)

it was shown in [SN96] that the coherent information is non-increasing under these operations
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S(A) ≥ I(A〉B) ≥ I(A〉C) (4.26)
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CHAPTER 5

The Resource Inequality Formalism

Introduced in [DW03a] and formally developed in [DHW08], the resource inequality formal-

ism provides a simple notation for representing coding theorems and studying their relations.

Its inventors noted that the known coding results in quantum Shannon theory could be seen

as inter-conversions between information processing resources, and suggested that a uni-

fied treatment of these inter-conversions, or inequalities, might unveil structure amongst the

coding theorems which had previously gone unseen.

The protocols of quantum Shannon theory all describe situations in which one or more

parties begin a process with one resource at their disposal, such as a noisy quantum chan-

nel, and end the process with another resource - pure entanglement, perhaps, or a noiseless

channel. The protocols themselves are in someways immaterial, serving to prove that an

interconversion is possible, sometimes, but often arriving on the scene long after the inequal-

ity itself has been proven. This is the case with the classical Shannon theory as well. The

canonical example being Shannon’s proof of channel coding theorem which gave no means of

constructing good codes while showing that they had to exist. Protocols for actually achiev-

ing capacity have been notoriously elusive; provable solutions for even the simplest classes

of channels (such as Arikan’s polar codes which are capacity achieving on binary discrete

memoryless channels [Ari08]) have emerged only in recent years.

And so the resource inequality formalism strips away the baggage of protocols and leaves

us with simple statements of input and output resources. Provided that the rules developed

in [DHW08] are adhered to in constructing resource inequalities, we may construct new

coding results by merely chaining statements together.

Claims to the utility of this approach are sure to inspire skepticism in some, and it is not

altogether unlikely that this framework will be soon forgotten in this rapidly evolving field.

For now, however, it appears in sufficiently many papers as to warrant mention.
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5.1 Resources and Resource Inequalities

Within quantum Shannon theory we find at least three ways to divide resources: classi-

cal/quantum, noisy/noiseless, and static/dynamic. The last of which is hopefully the only

requiring some explanation. Static resources are the objects of the theory, such as bits

and qubits and their multipartite counterparts shared random bits and entangled qubits.

Dynamic resources are processes which act on static resources such as channels and mea-

surements. These latter resources are always accompanied by a notion of directionality, and

we denote this with an arrow.

The noiseless classical bit and qubit channels are written as [c→ c] and [q → q] respec-

tively. The square brackets indicate that the resource is noiseless, curly braces in their place

would imply that the channels are noisy. Similarly, the static resources shared random bits

and entangled qubits are written as [cc] and [qq].

For instance, {c→ q}, indicates the noisy preparation of a quantum state from classical

information, and {q → c}, a measurement yielding classical information.

Addition and scalar multiplication of resources holds in the straightforward way: two

entangled qubits are denoted as 2 [qq], and access to both a quantum and a classical channel

as [q → q] + [c→ c].

Using just the above portions of the resource framework, we can already express some

powerful ideas and protocols. Consider, from our discussion of the HSW theorem, the

inequality representing the fact that a noiseless qubit channel may be used to send at most

one classical bit of information,

[q → q] ≥ [c→ c] . (5.1)

The inequality here gives the sense that the process is “one-way”, that while the qubit

channel is as powerful as the classical bit channel, the converse is not true.

We also know that one may use a noiseless qubit channel to share entanglement with

another party. One simply generates an entangled pair locally, and then communicates one

member of the pair through the channel. This gives us

[q → q] ≥ [qq] . (5.2)

From these two inequalities we can immediately derive the famous superdense coding

conversion of [BW92]. It states that two parties may communicate at the “super dense” rate

of two bits per qubit by spending one qubit of entanglement per transmission. The details of

the protocol will be covered in section 6.1, but for now we consider only the interconversion

it implies.
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Using a qubit channel twice we have [q → q] + [q → q] ≥ 2 [c→ c], and by application of

5.2 to one instance of [q → q] on the left hand side, we obtain superdense coding

[q → q] + [qq] ≥ 2 [c→ c] . (5.3)

The notation introduced thus far is lacking in many respects. For instance, we have

no means of indicating whether or not the parties know which entangled state they hold.

It is essential in superdense coding that the party initiating the communication have this

information. In general, we will not want to talk about just any noisy channel, or just any

entangled state, so additional notation is introduced to handle specific resources.

The inequality,

〈NA→B〉 ≥ R [c→ c] , (5.4)

states that a particular noisy quantum channel, N , which takes states from system A to

system B, is equivalent to at least R uses of a classical noiseless bit channel. Following this

example, we will often write dynamic resources with the name of the function to which they

correspond. 〈id2〉 is a noiseless qubit channel, and 〈id2〉, a noiseless bit channel.

For entanglement we may write 〈Φ+
2 〉 to denote a standard Bell Φ+ state; a value d in

the subscript would denote a generalized Bell state on a d level system.

There are still many nuances of the resource framework which have not been covered here.

One which we will need in the next section is the notion of a relative resource. The behavior

of these resources is guaranteed only when applied to a particular input. For example if

τ2 = 1
2
(|0〉 〈0| + |1〉 〈1|) = IA2 (a fully mixed state), then the resource 〈id2 : τ2〉 is a qubit

channel which is noiseless for τ2 states, but with behavior is undefined for other states such

as |0〉. We might use this resource to say that a channel which distributes τ2 states can be

used to generate shared classical randomness: 〈id2 : τ〉 ≥ [cc].
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CHAPTER 6

Noiseless protocols

6.1 Superdense coding

One of the earliest and simplest communication protocols, superdense coding, shows us that

the qubit channel can be used to send 2 classical bits per transmission in the presence of

previously shared entanglement. This feat is possible because local operations on Alice’s (or

for the matter, Bob’s) half of a |Φ+〉AB state are sufficient to transform the shared state into

any of the four Bell states - even when the particles are spatially separated.

(I⊗ I)
∣∣Φ+

〉AB
=
∣∣Φ+

〉AB
(X⊗ I)

∣∣Φ+
〉AB

=
∣∣Ψ+

〉AB
(Z⊗ I)

∣∣Φ+
〉AB

=
∣∣Φ−〉AB

(ZX⊗ I)
∣∣Φ+

〉AB
=
∣∣Ψ−〉AB

(6.1)

Having performed one of these four local transformations, Alice sends her qubit to Bob who

measures the pair in the Bell basis. His measurement informs him of which of the four

operations Alice applied, and thus yields two classical bits of information (the maximum he

could possibly attain, by the HSW theorem, from measurement of a two-qubit system).

The protocol readily generalizes to the N dimensional qudit case. Alice replaces her X

gate with a cyclic permutation, S, and her Z gate with a phase shift by an Nth root of unity,

D (three dimensional versions of these matrices are given below). In N dimensions there

are N2 generalized Bell states obtainable from the generalized Φ+ state by combinations of

cyclic permutations and phase shifts.

S3 =

0 0 1

1 0 0

0 1 0

 D3 =

1 0 0

0 ω 0

0 0 ω2

 ; ω = e2πi/N (6.2)

Counting resources, the qubit case yields 2 classical bits per spent ebit and use of a
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noiseless qubit channel, as we saw previously:

[q → q] + [qq] ≥ 2 [c→ c] . (6.3)

And the qudit case gives the more general trade-off:

〈Φ+
N〉

AB + 〈idA→BN 〉 ≥ 2 logN [c→ c] (6.4)

Both cases were originally presented in [BW92].

6.2 Quantum Teleportation

Quantum teleportation (QT) [BBC+93] can be expressed in the resource framework as:

2 [c→ c] + [qq] ≥ [q → q] . (6.5)

Although in this section we’ll drop the descriptive shorthand and write it as:

2〈id2〉+ 〈Φ2〉 ≥ 〈id2〉. (6.6)

In which 〈id2〉 is a noiseless classical bit channel; 〈Φ2〉 is a fully entangled state on the 2-

dimensional systems A and B (held by Alice and Bob respectively); and 〈id2〉 is a noiseless

qubit channel.

This generalizes quite easily to the N -dimensional case [?]1:

(2 log(N))〈id2〉+ 〈ΦN〉 ≥ 〈idN〉. (6.7)

In which the bipartite state and the quantum channel are both of dimension N . In N

dimensions the QT protocol can communicate 2(N − 1) parameters, the relative amplitudes

and phases.

1All logarithms are taken to be base 2
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6.3 Superdense Teleportation

H. J. Bernstein has developed a protocol, SuperDense Teleportation (henceforth SDT),

whereby the (N − 1) relative phases encoded on an N -level system, may be teleported

using log(N) bits of classical communication [Ber10].

Alice and Bob begin SDT by sharing a fully entangled state
∣∣Φ+

N

〉
= 1√

N

∑N−1
j=0 |j〉

A |j〉B.

A third party, Charles, chooses the state |ψ〉 = 1√
N

∑N−1
j=0 exp(iθj) |j〉 to be teleported -

{θ1, θ2, . . . , θN−1} are defined relative to θ0 which is constrained to zero by the equivalence

of states modulo a global phase factor. Charles applies the N − 1 relative phases to Alice’s

particle, which takes Alice and Bob’s shared state to

|ΦN〉 =
1√
N

N−1∑
j=0

exp(iθj) |j〉A |j〉B. (6.8)

Alice then performs the discrete Fourier transformation given by the N × N matrix Tjk =
1√
N
ωjk, where ω is a primitive Nth root of unity.

At this point a von Neumann measurement by Alice yields each of the N possible out-

comes with equal probability - a fact which will be especially important later when we

consider the coherent version of SDT. Alice classically communicates the log(N) bit result of

her measurement to Bob, who can then apply the appropriate decoding operation to recover

|ψ〉. Bob’s operations are given by powers of the diagonal matrix Djj = 1√
N
ωj(N−1); to

recover |ψ〉 he applies Dx where x is Alice’s message taken as an integer.

Provided that high dimensional entanglement is available, SDT requires as little as half

the classical channel capacity that a QT protocol teleporting the same number of parameters

would require2. More importantly though, the operations which Bob must perform to correct

his state are simpler and less numerous than those of QT. In SDT the receiving party

need only be capable of performing a number of relative phase shifts linearly related to the

dimension of the shared state. The experimental appeal of SDT becomes clear when we

consider that QT holds a quadratic relation between these quantities.

Stated as a resource inequality, SDT may be written:

log(N)〈id2〉+ 〈ΦN〉 ≥ 〈idN : ΨN〉 (6.9)

In which the relative resource 〈idN : ΨN〉 is a channel which reliably transmits states of the

2To teleport 2N − 2 parameters, QT requires a N -dimensional shared state and 2 logN bits of classical
communication; SDT requires a (2N − 1)-dimensional shared state and logN bits
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form:

|ΨN〉 =
1√
N

N−1∑
k=0

exp(iθk) |k〉. (6.10)

6.4 Coherent protocols

The coherent, or cobit, channel ∆d : A′ → AB is given by the isometry
∑

x |x〉
A |x〉B 〈x|A

′
,

and may be thought of as the quantum analogue of a noiseless classical channel with feedback

[Har03] [DHW08]. The inequality 〈∆d〉 ≥ 〈idd〉 is trivially attained by having Alice discard

her system after using the cobit channel. Additionally, entanglement is generated when

Alice inputs a superposition of states. In general this will be partial entanglement, but full

entanglement is generated when Alice inputs an equimodular state, therefore 〈∆d〉 ≥ 〈Φ+
d 〉.

Of much interest, as recognized in [Har03], is the ability of the cobit channel to communicate

and generate entanglement simultaneously provided certain conditions are met. TODO:

conditions

6.4.1 Coherent Teleportation

A coherent version of qubit QT was given in [Har03], although a circuit implementing it had

previously been discussed in [BBC98]. Alice and Bob begin by sharing a |Φ2〉 state; Alice

holds an additional state, |ψ〉, which is to be teleported. Rather than performing a measure-

ment in the Bell basis on her two particles as she normally would to initiate teleportation,

Alice unitarily rotates her system into the computational basis by applying (H⊗ I)cX. cX

here is the controlled-not gate. The resulting joint state is 1
2

∑
ij |ij〉

A (XiZj |ψ〉B). She can

then use the cobit channel to send a copy of her state, 1
2

∑
ij |ij〉

A |ij〉B (X iZj |ψ〉B). And

finally Bob can perform a cX followed by a cZ (controlled-Z) to recover |ψ〉. However that’s

not all they have accomplished, the final state of their joint system is (|Φ2〉 |Φ2〉)AB |ψ〉B. In

addition to teleporting |ψ〉 they’ve generated two bits of entanglement. This leads us to the

resource inequality: 2 [q → qq] + [qq] ≥ [q → q] + 2 [qq].
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6.4.2 Coherent SDT3

Recall that Alice and Bob initially share a
∣∣Φ+

N

〉
state which is altered by Charles to produce

|ΦN〉 =
1√
N

N−1∑
j=0

exp(iθj) |j〉A |j〉B (6.11)

Alice performs the discrete Fourier transformation (T) as usual, yielding

1√
N

N−1∑
j=0

|j〉A ⊗
(

exp(iθj)T |j〉B
)

(6.12)

Now instead of measuring her particle, Alice sends it through the coherent channel.

1

N

N−1∑
j=0

|j〉A |j〉B ⊗
(

exp(iθj)T |j〉B
)

(6.13)

Following [DHW04], we replace Bob’s decoding operation, D, with a controlled operation

cD =
∑N−1

j=0 |j〉 〈j|
B ⊗Dj. Applying this to his system transforms the joint state into(

1√
N

N−1∑
j=0

|j〉A |j〉B
)
⊗ |ψ〉B (6.14)

Or simply
∣∣Φ+

N

〉AB |ψ〉B. Just as in coherent QT, the parties have managed to recover the

entanglement spent during teleportation.

3This section is original work although it follows very closely from presentation of the coherent telepor-
tation in [DHW04].
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CHAPTER 7

Noisy Protocols, A Family Tree

We have encountered a number of noisy protocols already - in the form of channel coding

results. In this chapter we will examine an attempt that was made to tie the disparate

coding results together into a “family tree” of quantum protocols. Its success is perhaps the

strongest reason to believe that the resource inequality formalism holds some utility, and the

relationships discovered are interesting in their own right.

The mother and father resource inequalities as well as their relationships with their

“children” were introduced in [DHW04].

7.1 The mother protocol

The mother resource inequality embodies an achievability bound on entanglement purifica-

tion schemes. Given n instances of a noisy bipartite state ρAB and access to a noiseless

quantum channel, each instance of ρ may be converted into 1
2
I(A;B) qubits of pure entan-

glement at the cost of 1
2
I(A;E) qubits of noiseless communication. As a resource inequality

we have
1

2
I(A;E)ψ [q → q] + {qq} ≥ 1

2
I(A;B)ψ [qq] , (7.1)

where |ψ〉ABE is taken to be a purification of ρAB with the environment. To sanity check this

statement, note that if the input entanglement is pure (thereby requiring no purification),

then I(A;E) = 0 and 1
2
I(A;B) is equal to n - unsurprisingly, using zero communication

we can turn n entangled qubits into n entangled qubits. If ρ is a product state we find,

as we should expect, that I(A;B) = 0 since product states can not be distilled into pure

entanglement.

By combining the mother with the noiseless superdense coding and teleportation proto-

cols, Devetak, Harrow and Winter showed [DHW04] how to derive three other noisy proto-

cols.

The first, a form of noisy teleportation is obtained by appending teleportation to the

mother. Teleportation allows us to convert the mother’s 1
2
I(A;B)ψ [qq] into qubit commu-
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nication at a rate of two classical bits per qubit.

I(A;E)ψ [q → q] + {qq}+ I(A;B)ψ [c→ c] ≥ 1
2
I(A;B)ψ [q → q] (7.2)

We can simplify this further, although as we do it becomes less clear that there exists a

protocol satisfying the inequality. Since ψ is pure,

I(A;B)− I(A;E) = S(A) + S(B)− S(A,B)− S(A)− S(E) + S(A,E)

= S(A) + S(B)− S(A,B)− S(A)− S(A,B) + S(B)

= 2 (S(B)− S(A,B))

= 2 I(A〉B).

(7.3)

So, subtracting the quantum communication used in the input to the mother from both sides

of equation 7.2 we obtain

{qq}+ I(A;B)ψ [c→ c] ≥ I(A〉B)ψ [q → q] . (7.4)

The next inequality easily derived from the mother is gotten by prepending teleportation.

The resulting inequality happens to correspond to a bound (the hashing inequality [DW03b])

on the one-way distillable entanglement which is known to be optimal.

I(A;E) [c→ c] + {qq} ≥ I(A〉B) [qq] (7.5)

Here the communicating parties have spent 1
2
I(A;E) qubits of pure entanglement and

I(A;E) bits of classical communication in place of the 1
2
I(A;E) qubits of noiseless com-

munication required by the mother. The input entanglement has been subtracted from the

result.

A third inequality follows from appending superdense coding to the mother.

1
2
(I(A;B) + I(A;E)) [q → q] + {qq} ≥ I(A;B) [c→ c] (7.6)

The mother’s pure entangled output is spent, along with 1
2
I(A;B) qubits of quantum com-

munication, for a number of classical bits achieving the superdense limit. The qubit com-
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munication cost is simplified to S(A) by the following equivalence:

1
2
(I(A;B) + I(A;E)) = 1

2
(S(A) + S(B)− S(A,B) + S(A) + S(E)− S(A,E))

= 1
2
(S(A) + S(B)− S(E) + S(A) + S(E)− S(B))

= S(A)

(7.7)

7.2 The father protocol

A “father” inequality was also introduced by Devetak, Harrow and Winter in [DHW04]. It

is dual to the mother in the sense that it takes an identical form with dynamic resources

replacing the mother’s static resources and vice versa.

The father is stated as

1
2
I(A;E) [qq] + {q → q} ≥ 1

2
I(A;B) [q → q] . (7.8)

Playing a similar game as they did with the mother protocol, Devetak et al. were able to

re-derive two well known results from their father inequality.

First, by appending superdense coding, a statement of the entanglement-assisted classical

capacity is found.

S(A) [qq] + {q → q} ≥ I(A;B) [c→ c] (7.9)

Again, using equation 7.7 to simplify the input resources.

One final result concludes our traversal of the family tree. By devoting 1
2
I(A;B) qubits

of the father’s output to the restoration of the pure entangled input, a channel coding result

matching the discussion of section 4.4 is obtained.

{q → q} ≥ I(A〉B) [q → q] (7.10)

7.3 More fundamental protocols

Devetak et al. failed to find a relationship between their mother and father protocols beyond

that induced by swapping dynamic and static resources1. The continued search for structure

1Some researchers have noted that this leaves us with more of a Brady Bunch than a genealogical family
tree.
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underlying these relationships has, however, been fruitful. Abeyeshinghe et al. [ADHW06]

introduced a new resource inequality corresponding to the “mother of all” protocols, the

Fully Quantum Slepian-Wolf (FQSW) protocol. They showed how to derive the mother and

father protocols of the last section, as well as the state-merging primative of Horodecki et

al. , from this one inequality.

〈W S→AB : ϕS〉+ 1
2
I(A;R)ϕ [q → q] ≥ 1

2
I(A;B)ϕ [qq] + 〈idS→B : ϕS〉 (7.11)

The proof that protocols exist attaining this trade-off is based on a powerful new tech-

nique called decoupling.
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