
Choosing Parameters for NTRUEncrypt

Jeff Hoffstein1, Jill Pipher1, John M. Schanck2,3,
Joseph H. Silverman1, William Whyte3, and Zhenfei Zhang3

1 Brown University, Providence, USA
{jhoff,jpipher,jhs}@math.brown.edu

2 University of Waterloo, Waterloo, Canada
3 Security Innovation, Wilmington, USA

{jschanck,wwhyte,zzhang}@securityinnovation.com

Abstract. We describe a methods for generating parameter sets and calculating security estimates
for NTRUEncrypt. Analyses are provided for the standardized product-form parameter sets from IEEE
1363.1-2008 and for the NTRU Challenge parameter sets.

1 Introduction and Notation

In this note we will assume some familiarity with the details and notation of NTRUEncrypt. The reader
desiring further background should consult standard references such as [4, 5, 12]. The key parameters are
summarized in Table 1. Each is, implicitly, a function of the security parameter λ.

Primary NTRUEncrypt Parameters

N, q Ring parameters RN,q = Zq[X]/(XN − 1).
p Message space modulus.

d1, d2, d3 Non-zero coefficient counts for product form polynomial terms.
dg Non-zero coefficient count for private key component g.
dm Message representative Hamming weight constraint.

Table 1.

NTRUEncrypt uses a ring of convolution polynomials; a polynomial ring parameterized by a prime N and
an integer q of the form

RN,q = (Z/qZ)[X]/(XN − 1).

The subscript will be dropped when discussing generic properties of such rings. We denote multiplication in
R by ∗. An NTRUEncrypt public key is a generator for a cyclic R-module of rank 2, and is denoted (1, h). The
private key is an element of this module which is “small” with respect to a given norm and is denoted (f, g).
Ring elements are written in the monomial basis; elements of Z/qZ are identified with their unique integer
representatives in [−q/2, q/2] when lifted to Z or reduced by a second modulus; and the aforementioned
norm is the 2-norm on coefficient vectors: ∥∥∥∥∥

N−1∑
i=0

aix
i

∥∥∥∥∥
2

=

N−1∑
i=0

a2i . (1)

This norm is extended to elements (a, b) ∈ R⊕R as

‖(a, b)‖2 = ‖a‖2 + ‖b‖2. (2)

There is a large degree of freedom in choosing the structure of the private key. In previous parameter
recommendations [12][13] the secret polynomials f and g have been chosen uniformly from a set of binary or

trinary polynomials with a prescribed number of non-zero coefficients. These are far from the only choices.
The provably secure variant of NTRUEncrypt by Stehlé and Steinfeld [20], samples f and g from a discrete
Gaussian distribution, and the NTRU-like signature scheme BLISS [17] samples its private keys from a set
of polynomials with a prescribed number of ±1s and ±2s. The reasons for such choices are varied: binary
polynomials were believed to allow for a small q parameter, but the desire to increase resistance against
the hybrid combinatorial attack of [11] motivated the use of larger sample spaces in both NTRUEncrypt and
BLISS. In the provably secure variant the public key must be computationally indistinguishable from an
invertible ring element chosen uniformly at random. The discrete Gaussian distribution has several nice
analytic properties that simplify the proof of such a claim, and sampling from such a distribution is reasonably
efficient.

The parameter choices here make use of product-form polynomials for the private key component f and
for the blinding polynomials used during encryption. First introduced to NTRUEncrypt in [9], product form
polynomials allow for exceptionally fast multiplication in R without the use of Fourier transforms.

We set the notation:

TN = {trinary polynomials}

TN (d, e) =

{
trinary polynomials with exactly
d ones and e minus ones

}
PN (d1, d2, d3) =

{
product form polynomials
A1 ∗A2 +A3 : Ai ∈ TN (di, di)

}
.

If N is fixed, we drop it from the notation and write T , T (d, e), and P(d1, d2, d3).

A product form private key, the only type that will be considered in this document, is (f, g) = (1 + pF, g)
with F ∈ PN (d1, d2, d3) and g ∈ TN (dg+1, dg). As an additional caveat we need f to be invertible in RN,q so
that the corresponding public key (1, h) = (1, f−1g) exists. The parameters recommended in this document
ensure that when F is sampled uniformly from PN (d1, d2, d3), the polynomial 1+pF will always be invertible.
One may optionally check that g is invertible, although this is similarly unnecessary for appropriately chosen
parameters.

Algorithm 1 NTRUEncrypt Product Form Key Generation

Input: A full set of NTRUEncrypt parameters.
1: repeat
2: F ←$ PN (d1, d2, d3)
3: f = 1 + pF ∈ RN,q

4: until f is invertible in RN,q

5: g ←$ TN (dg + 1, dg)
6: h = f−1 ∗ g ∈ RN,q

Output: Private key (f, g), Public key (1, h)

For the sake of completeness we provide sketches of the standardized CCA-2 secure variants of the
NTRUEncrypt encryption and decryption algorithms. Further details may be found in [16] and [21], and
a reference implementation is freely available [18]. We will need several parameter-set dependent support
functions: an invertible message formatting function FMT, a blinding polynomial generation function BGF,
and a mask generation function MGF, with types:

FMT : Message× Random bits→ TN ,
BGF : Message× Random bits× Public key→ PN (d1, d2, d3),

MGF : RN,q → TN .

2

In practice these three functions are built around hash functions and, heuristically, behave like hash functions
themselves. A sketch of the encryption algorithm is provided in Algorithm 2, and a sketch of the decryption
algorithm in Algorithm 3.

Algorithm 2 NTRUEncrypt Encryption (sketch)

Input: Public key h, message M ∈ {0, 1}mLen, and a parameter set with p = 3.
1: repeat
2: b←$ {0, 1}bLen

3: m′ = FMT(M, b)
4: r′ = BGF(m′, b, h)
5: r = p · r′ ∗ h
6: mask = MGF(r)
7: m = m′ +mask (mod p)
8: until The number of +1s, −1s and 0s in m are each ≥ dm.
9: c = r +m
Output: Ciphertext c

Algorithm 3 NTRUEncrypt Decryption (sketch)

Input: Key pair ((f, g), (1, h)), ciphertext c ∈ RN,q, and a parameter set with p = 3.
1: m = f ∗ c (mod p)
2: r = c−m
3: mask = MGF(r)
4: m′ = m−mask (mod p)
5: (M, b) = FMT−1(m′)
6: r′ = BGF(m′, b, h)
7: if p · r′ ∗ h = r and the number of +1s, −1s and 0s in m are each ≥ dm then
8: result = M
9: else

10: result = ⊥
11: end if
Output: result

2 General considerations

Ring parameters: The only restrictions on p and q are that they generate coprime ideals of Z[X]/(XN − 1).
In this document we will fix p = 3 and only consider q that are a power of 2. This choice is motivated by the
need for fast arithmetic modulo q, and by the impact of p on decryption failure probability (see Section 6).

For NTRUEncrypt we take N to be prime. Many ideal lattice cryptosystems use the ring Zq[X]/(X2n +1)
primarily because X2n + 1 is irreducible over the rationals. Some complications arise from using a reducible
ring modulus, but these are easily remedied.

For prime N the ring modulus factors into irreducibles over Q as

XN − 1 = (X − 1)ΦN (X)

where ΦN (X) is the N th cyclotomic polynomial. To maximize the probability that a random f is invertible
in RN,q we should ensure that ΦN (X) is irreducible modulo 2, i.e. we should choose N such that (2) is inert
in the N th cyclotomic field. Such a choice of N ensures that f is invertible so long as f(1) 6= 0 (mod 2).
It is not strictly necessary that ΦN (X) be irreducibe modulo 2, and one may allow a small number of high

3

degree factors while maintaining a negligible probability of failure per loop iteration in Algorithm 1. A table
of reasonable primes is provided in Appendix D.1. Similar considerations apply for other choices of q.

Private key and message parameters: The analysis below will be considerably simpler if we fix the structure
of the private key in advance, that is specify how the values d1, d2, d3 and dg will be derived given N and
q. The desire to use a product form value for f comes purely from efficiency considerations, and the use
of trinary polynomials comes from a combination of combinatorial considerations and a desire to keep q
as small as possible while ensuring that decryption succeeds with all but negligible probability. In order to
maximize the size of the key space, while keeping a prescribed number of ±1s in g, we take dg = bN/3e.
The expected number of non-zero coefficients in f is 4d1d2 + 2d3. So, in order to roughly balance the hybrid
combinatorial search problems for f and g (Section 4), we take d1 ≈ d2 ≈ d3 with d1 = bαe where α is the
positive root of 2x2 + x−N/3. This gives us 2d1d2 + d3 ≈ N/3.

A Hamming weight restriction is placed on message representatives to avoid significant variation in
the difficulty of message recovery due to the choice of representative. Message representatives are trinary
polynomials, and we require that the number of +1s, −1s and 0s each be greater than dm. The procedure
for choosing dm is given in Section 5.

3 Review of the hybrid attack

Suppose one is given an NTRU public key (1, h) along with the relevant parameter set. This information
determines a basis for a lattice L of rank 2N generated by the rows of

L =

(
qIN 0
H IN

)
(3)

wherein the block H is the circulant matrix corresponding to h, i.e. its rows are the coefficient vectors of
xi ∗ h for i ∈ [0, N − 1]. The map (1, h)RN,q → L/qL that sends (a, b) 7→ (b0, . . . , bN−1, a0, . . . , aN−1) is an
additive group isomorphism that preserves the norm defined in Equation 2. As such, if one can find short
vectors of L one can find short elements of the corresponding NTRU module.

The determinant of L is ∆ = qN , giving us a Gaussian expected shortest vector of length λ ≈
√
qN/πe,

though the actual shortest vector will be somewhat smaller than this. A pure lattice reduction attack would
attempt to solve Hermite-SVP4 with factor λ/∆1/2N =

√
N/πe, which is already impractical for N around

100. The experiments of [19] support this claim, they were able to find short vectors in three NTRU lattices
with N = 107 and q = 64 that were generated using binary private keys. Only one of these was broken
with BKZ alone, the other two required a heuristic combination of BKZ on the full lattice and BKZ on a
projected lattice of smaller dimension with block sizes between 35 and 41.

Consequently the best attacks against NTRUEncrypt tend to utilize a combination of lattice reduction
and combinatorial search. In this section we will review one such method from [11], known as the hybrid
attack.

The rough idea is as follows. One first chooses N1 < N and extracts a block, L1, of 2N1×2N1 coefficients
from the center of the matrix L defined in Eq. 3. The rows of L1 are taken to generate a lattice L1.

(
qIN 0
H IN

)
=

 qIr1 0 0
∗ L1 0
∗ ∗ Ir2

 (4)

A lattice reduction algorithm is applied to find a unimodular transformation, U ′, such that U ′L1 is reduced,
and an orthogonal transformation, Y ′, is computed such that U ′L1Y

′ = T ′ is in lower triangular form. These

4 In practice q has a strong impact on the effectiveness of pure lattice reduction attacks as well. For large q the
relevant problem becomes Unique-SVP which appears to be somewhat easier than Hermite-SVP. Conservative
parameter generation should ensure that it is difficult to solve Hermite-SVP to within a factor of q/∆1/2N =

√
q.

4

transformations are applied to the original basis to produce a basis for an isomorphic lattice:

T = ULY =

 Ir1 0 0
0 U ′ 0
0 0 Ir2

 qIr1 0 0
∗ L1 0
∗ ∗ Ir2

 Ir1 0 0
0 Y ′ 0
0 0 Ir2

 =

 qIr1 0 0
∗ T ′ 0
∗ ∗ Ir2

 . (5)

Notice that (g, f)Y is a short vector in the resulting lattice.
In general it is not necessary for the extracted block to be the central 2N1×2N1 matrix, and it is sometimes

useful to consider blocks shifted s indices to the top left along the main diagonal. Let r1 = N −N1 − s be
the index of the first column of the extracted block and r2 = N +N1 − s be the index of the final column.
The entries on the diagonal of T will have values {qα1 , qα2 , . . . , qα2N }, where α1 + · · · + α2N = N , and the
αi, for i in the range [r1, r2], will come very close to decreasing linearly. That is to say, L1 will roughly obey
the geometric series assumption (GSA). The rate at which the αi decrease can be predicted very well based
on the root Hermite factor achieved by the lattice reduction algorithm used.5 Clearly αi = 1 for i < r1 and
αi = 0 for i > r2. By the analysis in Appendix E we expect

αr1 =
1

2
+

s

2N1
+ 2N1 logq(δ) (6)

αr2 =
1

2
+

s

2N1
− 2N1 logq(δ), (7)

and a linear decrease in-between. The profile of the basis will look like one of the examples in Figure 1.

Fig. 1. Log length of ith Gram-Schmidt vector, logq(‖b∗i ‖).

By a lemma of Furst and Kannan (Lemma 1 in [11]), if y = uT + x for vectors u and x in Z2N , and
−Ti,i/2 < xi ≤ Ti,i/2, then reducing y against T with Babai’s nearest plane algorithm will yield x exactly.
Thus if v is a shortest vector in L and αr2 > logq(2‖v‖∞), it is guaranteed that v can be found by enumerating
candidates for its final K = 2N − r2 coefficients. Further knowledge about v can also diminish the search
space. For example, if it is known that there is a trinary vector in L, and αr2 > logq(2), then applying
Babai’s nearest plane algorithm to some vector in the set

{(0|v′)T − (0|v′) : v′ ∈ TK}

will reveal it.

5 A lattice reduction algorithm that achieves root Hermite factor δ returns a basis with ‖b1‖2 ≈ δn det(Λ)1/n.

5

The optimal approach for the attacker is determined by the balancing the cost of combinatorial search on
K coordinates against the cost of lattice reduction that results in a sufficiently large α2N−K . Unsurprisingly,
näıve enumeration of the possible v′ is not optimal.

4 Meet in the middle search

The adaptation of meet-in-the-middle search algorithms to the structure of binary NTRU keys is due to
Odlyzko and described in [6]. Generalizations to other private key types are described by Howgrave-Graham
in [11]; this is the presentation we follow here. The key idea is to decompose the search space S as S ⊆ S′⊕S′
for some set S′ such that |S′| ≈

√
|S|. If s1 and s2 are elements of S′ such that s1 + s2 = f , and (f, g) is an

element with small coefficients in the NTRU module generated by (1, h), then (s1, s1∗h) = (f, g)−(s2, s2∗h).
In particular, when the coefficients of g are trinary, this implies that s1 ∗ h ≈ −s2 ∗ h coordinate-wise.

Under the assumption that all approximate collisions can be detected, a meet in the middle search on the
full product form NTRUEncrypt key space would require both time and memory of orderO(

√
|PN (d1, d2, d3)|).

A meet in the middle search is also possible on a basis that has been preprocessed for the hybrid at-
tack as in Equation 5. The assumption that all approximate collisions can be detected will turn out to be
untenable in this case, however, in the interest of deriving conservative parameters we will assume that
this complication does not arise. Let Π : ZN → ZK be a projection6 onto K coordinates of ZN . Let
PΠ = {vΠ : v ∈ PN (d1, d2, d3)}. The f component of the private key is guaranteed to appear in PΠ , so the
expected time and memory required for the attack is O(

√
|PΠ |). That said, estimating the size of PΠ is

non-trivial.

We may also consider an adversary who attempts this attack on the lattice corresponding to (1, h−1)
and searches for the g component of the private key instead. This may in fact be the best strategy for the
adversary, because while |PN (d1, d2, d3)| < |TN (dg + 1, dg)| for parameters of interest to us, the presence of
coefficients not in {−1, 0, 1} in product form polynomials leads to a large increase in the relative size of the
projected set.

In either case we assume that it is sufficient for the adversary to search for trinary vectors, and that they
may limit their search to a projection of TN (d, e) for some (d, e). When targeting g we have d = dg + 1,
e = dg, and when targeting f we have that both d and e are approximately 2d1d2 + d3. Clearly when
d = e = N/3, and N � K, we should expect that the projection of a uniform random element of TN (d, e)
onto K coordinates will look like a uniform random element of TK . For such parameters, the size of the set
that must be enumerated in the meet-in-the-middle stage is ≈ 3K/2.

For d 6= N/3, or for large K, not all trinary sequences are equally likely, and the adversary may choose
to target a small set of high probability sequences. Consequently we must estimate the size of the set of
elements that are typical under the projection. Fix N , K, Π, d, and e and let S = TN (d, e). Let p : TK → R
be the probability mass function on TK induced by sampling an element uniformly at random from S and
projecting its coefficient vector onto the set of K coordinates fixed by Π. We will estimate the size of the
search space in the hybrid attack as, roughly, 2H(p), where H(p) is the Shannon entropy of p.

Let SΠ(a, b) be the subset of S consisting of vectors, v, such that vΠ has exactly a coefficients equal
to +1 and b coefficients equal to −1. By the symmetry of S under coordinate permutations we have that
p(vΠ) = p(v′Π) for all pairs v, v′ ∈ SΠ(a, b). We choose a fixed representative of each type: va,b = vΠ for
some v ∈ SΠ(a, b), and write

p(va,b) =
1(

K
a

)(
K−a
b

) |SΠ(a, b)|
|S|

=

(
N−K
d−a

)(
N−K−d+a

d−b
)(

N
d

)(
N−d
d

) . (8)

6 We will abuse notation slightly and allow Π to act on elements of R by acting on their coefficient vectors lifted to
ZN .

6

As there are exactly
(
K
a

)(
K−a
b

)
distinct choices for va,b this gives us:

H(p) = −
∑
v∈TK

p(v) log2 p(v) = −
∑

0≤a,b≤d

(
K

a

)(
K − a
b

)
p(va,b) log2 p(va,b). (9)

The size of the search space is further decreased by a factor of N since xi ∗ g is likely to be a distinct
target for each i ∈ [0, N − 1]. Hence in order to resist the hybrid meet-in-the-middle attack we should ensure

1

2
(H(p)− log2(N)) ≥ λ. (10)

The only variable not fixed by the parameter set itself in Equation 9 is K. In order to fix K we must consider
the cost of lattice reduction.

The block to be reduced is of size (r2 − r1) × (r2 − r1) where r2 = 2N − K and r1 = λ. Recall that
s = N−(r1+r2)/2, and N1 = (r2−r1)/2. Having fixed these parameters we can use Equation 7 to determine
the strength of the lattice reduction needed to ensure that αr2 is sufficiently large to permit recovery of a
trinary vector. In particular, we need

αr2 =
N1 + s

2N1
− 2N1 logq(δ) ≥ logq(2),

which implies that

log2(δ) ≤ N1 + s

4N2
1

log2(q)− 1

2N1
. (11)

Translating the required root Hermite factor, δ, into a concrete bit-security estimate is notoriously dif-
ficult. However there seems to be widespread consensus on the values that are currently out of reach for
common security parameters. As such one might use the following step function as a first approximation:

δ∗(λ) =

1.009 if λ ≤ 60

1.008 if 60 < λ ≤ 80

1.007 if 80 < λ ≤ 128

1.005 if 128 < λ ≤ 256

1 otherwise.

A more refined approach involving the simulator from [1] is used in Section 8.
Rewriting Equation 11 in terms of N , q, r1 and K we define:

log2(η(N, q, r1,K)) =
(N − r1) log2(q)

4N2 − 4N (K + r1) + (K2 + 2r1K + r21)
− 1

2N − (K + r1)
. (12)

A parameter set resists hybrid meet-in-the-middle attacks on private keys if Equation 10 is satisfied and

1 < η(N, q, r1,K) ≤ δ∗(r1). (13)

5 Rejecting sparse (and dense) message representatives

The parameter sets in this paper specify the exact number of 1’s and −1’s in each of r1, r2, r3, which
reveals the quantity r(1), that is, the polynomial r evaluated at 1. As an encrypted message has the form
e = pr∗h+m, the value m(1) modulo q is revealed by the known quantities r(1), e(1), h(1). The value m(1) in
turn reveals the difference between the number of 1’s and the number of −1’s in the message representative.

We assume that the randomness used in querying MGF is sufficent to ensure that the masking polynomial
generated in Line 6 of Algorithm 2 is sampled uniformly from TN . This results in a uniformly distributed

7

message representative. The expected value of m(1) is zero, but for large |m(1)|, the size of the search space
for m decreases, making a meet in the middle search for (r,m) easier. We assume that the adversary observes
a very large number of messages and can freely condition their attack on the value of m(1) regardless of the
probability that a uniform random message representative takes that value.

Line 8 of Algorithm 2 and Line 7 of Algorithm 3 work to prevent these types of attacks by forbidding
message representatives with particularly small, or large, Hamming weight. Specifically, these lines forbid the
number of +1s, −1s, or 0s to be less than a given parameter, dm. The choice of dm depends primarily affects
resistance against hybrid combinatorial attacks, but dm also has an impact on decryption failure probability,
as will be discussed in Section 6.

The calculation for determining resistance against hybrid combinatorial attacks is very similar to that
leading up to Equation 9, but there are two key differences. First, in Section 4 we were primarily concerned
with validating the security of the obvious choice dg = bN/3e. Here we will need to search for dm. Second,
having fixed dm we need to condition the distribution of projected elements on the value of m(1).

The search space for dm can be constrained by imposing an arbitrary upper bound on the probability of
a failure in Line 8 of Algorithm 2. Such a failure is roughly as expensive as a full encryption, so dm should
be chosen to ensure that failures are rare.

Let
I(dm) = {(i, j) : dm ≤ i < (N − 2dm), dm ≤ j < (N − dm − i)}.

We will only consider dm satisfying:

2−10 ≥ 1− 3−N

 ∑
(i,j)∈I(dm)

(
N

i

)(
N − i
j

) (14)

Let K be the value derived in Section 4. Fix Π and let S(e1, e2; a, b) be the set of projections of elements
of T (e1, e2) with a ones and b minus ones. Let M be the subset of TN satisfying the dm constraint. Let
p : TK × Z× Z→ R be the probability mass function given by

p(v, e1, e2) = Probm←$M (mΠ = v and m ∈ TN (e1, e2)) ,

i.e. p(v, e1, e2) is the probability that an m sampled uniformly from M has e1 ones, e2 minus ones, and is
equal to v under projection. If the information leakage from m(1) determined e1 and e2 then we could use
essentially the same analysis as Section 4 and our security estimate would be

1

2
min

(e1,e2)∈I(dm)
H(pdm |e1, e2).

However the adversary only learns m(1) = e1 − e2, so we will account for their uncertainty about whether
m ∈ T (e1, e2) given m(1) = e1 − e2.

The marginal distribution on e1 and e2 conditioned on the event m(1) = y is

q(e1, e2|m(1) = y) =
∑
v∈TK

p(v, e1, e2|m(1) = y)

=

(
N

e1

)(
N − e1
e2

) ∑
i−j=y

(i,j)∈I(dm)

(
N

i

)(
N − i
j

)
−1

.

As such we will consider a parameter set secure against hybrid meet-in-the-middle attacks on messages
provided that:

λ ≤ min
y

min
e1−e2=y

(e1,e2)∈I(dm)

1

2
H(p|e1, e2)− log2 q(e1, e2|m(1) = y). (15)

8

Evaluating this expression is considerably simplified by noting that local minima will be found at the extremal
points: |e1 − e2| = N − 3dm and e1 = e2 ≈ N/3.

Note that unlike the estimate in Section 4 we do not include a − log2(N) term to account for rotations
of m.

6 Estimating the probability of decryption failure

As remarked earlier, in order for decryption to succeed the coefficients of

a = p ∗ (r ∗ g +m ∗ F) +m (16)

must have absolute value less than q/2.
Assuming p ∈ Z, and trinary g and m, the triangle inequality yields:

‖a‖∞ ≤ p (‖r‖1‖g‖∞ + ‖F‖1‖m‖∞) + 1 = p (‖r‖1 + ‖F‖1) + 1. (17)

Thus with product form r and F decryption failures can be avoided entirely by ensuring (q − 2)/2p >
8d1d2 + 4d3. However, since ciphertext expansion scales roughly as N log2(q), it can be advantageous to
consider probabilistic bounds as well. The probability

Prob (a given coefficient of r ∗ g +m ∗ F has absolute value ≥ c) (18)

can be analyzed rather well by an application of the central limit theorem. This was done for the case of
trinary r, g,m, F in [3]. Here we provide a modified analysis for the case where the polynomials r and F take
a product form. In particular, we assume that r = r1 ∗ r2 + r3, F = F1 ∗ F2 + F3, where each ri and Fi has
exactly di coefficients equal to 1, di coefficients equal to −1, and the remainder equal to 0.

Let Xk denote a coefficient of r ∗ g + m ∗ F . The spaces from which r and m are drawn are invariant
under permutations of indices, so the probability that |Xk| > c does not depend on the choice of k.7 Note
that Xk has the form

Xk = (r1 ∗ r2 ∗ g)k + (r3 ∗ g)k + (F1 ∗ F2 ∗m)k + (F3 ∗m)k, (19)

and each term in the sum is itself a sum of either 4d1d2 or 2d3 (not necessarily distinct) coefficients of g or
m. For instance,

(r1 ∗ r2 ∗ g)k =
∑
i,j

(r1)i(r2)j(g)(k−i−j)

and only the 4d1d2 pairs of indices corresponding to non-zero coefficients of r1 and r2 contribute to the sum.
We can think of each index pair as selecting a sign ε(i) and an index a(i) and rewrite the sum as

(r1 ∗ r2 ∗ g)k =

4d1d2∑
i=1

ε(i)(g)a(i).

While the terms in this sum are not formally independent (since a may have repeated indices, and g has a
prescribed number of non-zero coefficients) extensive experiments show that the variance of (r1 ∗ r2 ∗ g)k is
still well approximated by treating (g)a(i) as a random coefficient of g, i.e. as taking a non-zero value with
probability (2dg + 1)/N :

E
[
(r1 ∗ r2 ∗ g)2k

]
≈

4d1d2∑
i=1

E
[
(ε(i)(g)a(i))

2
]

=

4d1d2∑
i=1

E
[
(g)2a(i)

]
= 4d1d2 ·

2dg + 1

N

7 The Xk for different k have the same distribution, but they are not completely independent. However, they are so
weakly correlated as to not affect our analysis.

9

Nearly identical arguments can be applied to compute the variances of the other terms of Eq. 19, although
some care must be taken with the terms involving m. While an honest party will choose m uniformly from
the set of trinary polynomials, m could be chosen adversarily to maximize its Hamming weight and hence the
probability of a decryption failure. Due to the dm constraint (Section 5), the number of non-zero coefficients
of m cannot exceed N − dm. As such we model the coefficients of m as taking ±1 each with probability
(1− dm/N) and 0 with probability dm/N .

With these considerations the variance of (r1 ∗r2 ∗g)k+(r3 ∗g)k is found to be σ2
1 = (4d1d2 +2d3) · 2dg+1

N ,

and the variance of (F1 ∗ F2 ∗ m)k + (F3 ∗ m)k is found to be σ2
2 = (4d1d2 + 2d3) · (1 − dm

N). Both terms
are modeled as sums of i.i.d. random variables, and the di are chosen such that 4d1d2 + 2d3 ≈ 2N/3, so for
sufficiently large N the central limit theorem suggests that each term will have a normal distribution. Finally
Xk can be expected to be distributed according to the convolution of these two normal distributions, which
itself is a normal distribution with variance

σ2 = σ2
1 + σ2

2 = (4d1d2 + 2d3) · N − dm + 2dg + 1

N
. (20)

The probability that a normally distributed random variable with mean 0 and standard deviation σ ex-
ceeds c in absolute value is given by the complementary error function, specifically erfc(c/(

√
2σ)). Applying

a union bound, the probability that any of the N coefficients of r ∗ g + m ∗ f is greater than c is bounded
above by N · erfc(c/(

√
2σ)).

With respect to the security parameter, λ, this imposes the constraint

N · erfc((q − 2)/(2
√

2 · p · σ)) < 2−λ (21)

where σ = σ(N, d1, d2, d3, dg, dm) as in Eq. 20.

7 Product form combinatorial strength

The search space for a triple of polynomials F1, F2, F3 where each polynomial Fi has di 1’s and di −1’s is of
size:

|PN (d1, d2, d3)| =
(
N

d1

)(
N − d1
d1

)(
N

d2

)(
N − d2
d2

)(
N

d3

)(
N − d3
d3

)
.

Thus a purely combinatorial meet-in-the-middle search on product form keys can be performed in time and
space

O(
√
|PN (d1, d2, d3)| /N).

Where we have divided by N to account for the fact that rotations of a given triple are equivalent.
Finally, one could construct a 3N dimensional lattice attack by considering the lattice generated by linear

combinations of the vectors (1, 0, f1 ∗ h), (0, 1, h), (0, 0, q), where each entry corresponds to N entries in the
lattice. The vector (f2, f3, g) will be a very short vector, but the increase of the dimension of the lattice
by N , without any corresponding increase in the determinant of the lattice, leads to a considerably harder
lattice reduction problem. As this attack also requires a correct guess of f1 we will not consider it further.

8 Sample parameter generation

Appendix A gives an explicit algorithm for deriving parameters. We will ignore the implicit outer loop over
security parameters and consider the case of N = 401 starting from Line 3.

Our recommendations for the key structure suggests taking dg = 134, d1 = 8, d2 = 8, d3 = 6. Taking
dm = 102 satisfies Equation 14 with a probability of 2−10.4 of rejecting a message representative due to
its coefficient sum. A direct meet-in-the-middle attack on the product form key space will involve testing
approximately 2145 candidates. As this is an upper bound on the security of the parameter set we will ensure

10

that our decryption failure probability is less than 2−145. This implores us to take q = 2048, for which there
is, by Equation 21, a decryption failure probability of 2−217.

In order to finish the parameter derivation we need a tighter estimate on its security. It may be significantly
less than 145, in which case we may be able to reduce q.

We estimate the security of the parameter set by minimizing the adversary’s expected cost over choices
of the hybrid attack parameter K. Equation 12 specifies, for each K, the root Hermite factor, δ, that must
be reached during the lattice reduction phase of the hybrid attack in order for the combinatorial stage to be
successful. We use the BKZ-2.0 simulator of [1] to determine the blocksize and number of rounds of BKZ
that will be required to reach root Hermite factor δ.

To turn the blocksize and iteration count into a concrete security estimate we need estimates on the
number of nodes visited per call to the enumeration subroutine of BKZ. Table 8 summarizes upper bounds
given by Chen and Nguyen in [1] and in the full version of the same paper[2]. The estimates of the full version
are significantly lower than the original, and have perhaps not recieved the same scrutiny. In what follows
we will consider the implications of both estimates.

β 100 110 120 130 140 150 160 170 180 190 200 210 220 230 240 250

Estimate 1[1] 41.4 47.1 53.1 59.8 66.8 75.2 84.7 94.7 105.8 117.6 129.4 - - - - 204.1

Estimate 2[2] 39 44 49 54 60 66 72 78 84 96 99 105 111 120 127 134
Table 2. Upper bounds on log2 number of nodes enumerated in one call to enumeration subroutine of BKZ-2.0 as
reported in the original and full versions of the paper.

To facilitate computer search for parameters we fit curves to the estimates in Table 8, and following [1]
we estimate the per-node cost, as 27 operations. The resulting predictions for the cost of the lattice reduction
stage, in terms of the blocksize, the dimension of the sublattice to be reduced, and number of rounds are
thus:

LogNodes1(β) = 0.00405892β2 − 0.337913β + 34.9018

Estimate1(β, dim,#rounds) = LogNodes1(β) + log2(dimension ·#rounds) + 7

LogNodes2(β) = 0.000784314β2 + 0.366078β − 6.125

Estimate2(β, dim,#rounds) = LogNodes2(β) + log2(dimension ·#rounds) + 7.

Finally our security estimate requires a search over K to balance the cost of lattice reduction against the
cost of combinatorial search given by Equation 10.

We find that for K = 166 the BKZ-2.0 simulator suggests that 11 rounds of BKZ-181 will achieve the
requisite root hermite factor of δ = 1.0067. Using Estimate1 this reduction will require 2126 operations,
matching the cost of 2127 given by Equation 10.

Similarly, for K = 154 the BKZ-2.0 simulator suggests that 10 rounds of BKZ-197 will achieve to the
requisite δ = 1.0064. Using Estimate2 this reduction will require 117 operations, matching the cost of 2116

given by Equation 10.
Using either of the BKZ estimates we find that we cannot decrease q without violating the constraint on

the decryption failure probability, and we are done.
The parameter set we have just (re-)derived originally appeared in the EESS #1 standard at the 112 bit

security level. All four product-form parameter sets from EESS #1 are reviewed in Table 3 with security
estimates following the above analysis. Note that while the algorithm in Appendix A rederives the N = 401
parameter set almost exactly (dg is 133 in EESS #1), this is not true for the N = 593 and N = 743
parameter sets. In particular, all four of the published parameter sets take q = 2048, and this does not lead
to a formally negligible probability of decryption failure for N = 593 or N = 743. Note also that the number
of prime ideals lying above (2) is more than recommended for N = 439 and N = 593. Table 3 presents

11

security estimates for the standardized parameters rather than those that would be output by the algorithm
of Appendix A.

EESS #1 Parameter Sets and Security Estimates

Original Estimate 1 Estimate 2 Product form log2

security est. N q d1 d2 d3 dg dm K Cost K Cost search cost dec. fail prob.

112 401 2048 8 8 6 133 101 166 127 154 116 145 -217

128 439 2048 9 8 5 146 112 192 145 175 133 147 -195

192 593 2048 10 10 8 197 158 303 236 264 204 193 -139

256 743 2048 11 11 15 247 204 423 330 360 280 256 -112

Table 3.

References

1. Yuanmi Chen and Phong Q Nguyen. BKZ 2.0: Better lattice security estimates. In ASIACRYPT 2011, pages
1–20. Springer, 2011.

2. Yuanmi Chen and Phong Q Nguyen. BKZ 2.0: Better lattice security estimates (Full Version). Available at
http://www.di.ens.fr/ ychen/research/Full BKZ.pdf

3. P. Hirschhorn, J. Hoffstein, N. Howgrave-Graham, W. Whyte, Choosing NTRU parameters in light of combined
lattice reduction and MITM approaches, Applied Cryptography and Network Security, LNCS, Volume 5536/2009,
437–455

4. J. Hoffstein, J. Pipher, J.H. Silverman, NTRU: A new high speed public key cryptosystem, Algorithmic Number
Theory (ANTS III), Portland, OR, June 1998, Lecture Notes in Computer Science 1423, J.P. Buhler (ed.),
Springer-Verlag, Berlin, 1998, 267–288

5. J. Hoffstein, J.H. Silverman, Optimizations for NTRU, Public Key Cryptography and Computational Number
Theory (Warsaw, Sept. 11–15, 2000), Walter de Gruyter, Berlin–New York, 2001, 77–88.

6. J. Hoffstein, J.H. Silverman, W. Whyte, Meet-in-the-middle Attack on an NTRU private key, Technical report,
NTRU Cryptosystems, July 2006. Report #04, available at http://www.ntru.com.

7. J. Hoffstein, J.H. Silverman, Provable Probability Bounds for NTRUEncrypt Convolution Wrap/Gap Events
Technical report, NTRU Cryptosystems, July 2007. Report #022, available at http://www.ntru.com.

8. J. Hoffstein, N. Howgrave-Graham, J. Pipher, J. Silverman, W. Whyte, NTRUSign: Digital Signatures Using the
NTRU Lattice, CT-RSA 2003.

9. J. Hoffstein, J. Silverman, Random small hamming weight products with applications to cryptography, Special
issue on the 2000 com2Mac workshop, 2003, 37-49.

10. Jeff Hoffstein, Nicholas Howgrave-graham, Jill Pipher, Joseph H. Silverman, William Whyte, Performance Im-
provements and a Baseline Parameter Generation Algorithm for NTRUSign, In Proc. of Workshop on Mathe-
matical Problems and Techniques in Cryptology, 2005, pp 9 9–126

11. N. Howgrave-Graham, A Hybrid Lattice-Reduction and Meet-in-the-Middle Attack Against NTRU, Lecture Notes
in Computer Science, pringer Berlin / Heidelberg, in Advances in Cryptology - CRYPTO 2007, Volume 4622/2007,
pages 150–169.

12. N. Howgrave-Graham, J. H. Silverman, W. Whyte Choosing Parameter Sets for NTRUEncrypt with NAEP and
SVES-3, Topics in cryptology—CT-RSA 2005, 118–135, Lecture Notes in Comput. Sci., 3376, Springer, Berlin,
2005. http://www.ntru.com/cryptolab/articles.htm\#2005_1

13. P. Hirschhorn, J. Hoffstein, N. Howgrave-Graham, W. Whyte, C hoosing NTRUEncrypt Parameters in Light of
Combined Lattice Reduction and MITM Approaches, ACNS 2009. 437-455

14. P. Nguyen, O. Regev, Learning a Parallelepiped: Cryptanalysis of GGH and NTRU Signatures, Eurocrypt 2006,
271-288.

15. V. Shoup NTL: A Library for doing Number Theory, Version 5.4, http://www.shoup.net/ntl
16. IEEE Std 1363.1-2008, IEEE Standard Specification for Public Key Cryptographic Techniques Based on Hard

Problems over Lattices, 2008
17. L. Ducas, A. Durmus, T. Lepoint, V. Lyubashevsky, Lattice Signatures and Bimodal Gaussians, CRYPTO 2013,

40-56.

12

18. NTRUOpenSourceProject, https://github.com/NTRUOpenSourceProject/ntru-crypto
19. N. Gama, P. Nguyen, Predicting lattice reduction, EUROCRYPT’08, 31-51
20. D. Stehl, R. Steinfeld, Making NTRU as Secure as Worst-Case Problems over Ideal Lattices, EUROCRYPT 2011,

27-47
21. Consortium for Efficient Embedded Security, Efficient Embedded Security Standard (EESS) #1 version 3.0, 2015,

available at https://github.com/NTRUOpenSourceProject/ntru-crypto.
22. NTRU challenge, Feb 2015, https://www.ntru.com/ntru-challenge/.

13

A Explicit algorithm for computing parameters

The following algorithm determines the smallest recommended N from Table 4 or Table 5 that allows for k
bit security. Additional details, such as recommendations on how to efficiently perform the search in Line 16,
may be found in our implementation which is available at https://github.com/NTRUOpenSourceProject/
ntru-params.

Algorithm 4 NTRUEncrypt parameter generation

Input: Desired security level k.
1: Let nj be the jth value, ordered by magnitude, from either Table 4 or Table 5.
2: Set j = 1.
3: Set N = nj .
4: Set dg =

⌊
N
3

⌉
.

5: Set d1 =

⌈
1
4

(√
1 + 8N

3
− 1

)⌉
{The next integer above the positive root of 2x2 + x−N/3.}

6: Set d2 =
⌈(

N
3
− d1

)
/(2d1)

⌉
.

7: Set d3 = max
(⌈

d1
2

+ 1
⌉
,
⌈
N
3
− 2d1d2

⌉)
.

8: Set dm to be the largest value satisfying Equation 14.
9: Set k1 =

⌊
1
2

log2 (|PN (d1, d2, d3)|/N)
⌋
. {Cost of direct combinatorial search gives an upper bound on the security.}

10: if k1 < k then
11: Increment j.
12: Goto line 3.
13: end if
14: Set σ according to Equation 20.

σ =

(
(4d1d2 + 2d3) · N − dm + 2dg + 1

N

)1/2

.

15: Set q to be the smallest power of 2 satisfying

N · erfc
(

(q − 2)/(6
√

2σ)
)
< 2−k1 .

{Estimate security}
16: Search for a hybrid parameter K that minimizes the maximum of the cost estimates for hybrid attacks. Equation

12 gives the cost of the lattice reduction, and Equations 10 and 15 give the cost of combinatorial search for key-
and message-recovery attacks respectively. Let k2 be the corresponding security estimate.

17: if k > min(k1, k2) then
18: Increment j.
19: Go to Line 3.
20: end if
21: Let q′ = q/2.
22: if N · erfc

(
(q′ − 2)/(6

√
2σ)
)
< 2−k then

23: Set q = q′

24: Repeat security estimate (Line 16) with modulus q′ and set k2 equal to the result.
25: Go to Line 17.
26: end if
Output: [N, q, d1, d2, d3, dg, dm].

14

B Security estimates for NTRU challenges

NTRU Challenge Parameter Sets and Security Estimates

Estimate 1 Estimate 2 Product form log2

N q d1 d2 d3 dg dm K Cost K Cost search cost dec. fail prob.

107 512 4 4 4 36 20 - - - - 63 -46

113 1024 5 4 3 38 21 - - - - 63 -162

131 1024 5 4 4 44 26 - - - - 71 -159

139 1024 5 5 3 46 28 - - - - 72 -132

149 1024 5 5 3 50 31 - - - - 73 -132

163 1024 5 5 4 54 35 - - 50 35 80 -128

173 1024 6 5 4 58 37 61 43 53 37 86 -109

181 1024 6 5 4 60 39 65 46 56 40 87 -109

191 1024 6 5 4 64 42 67 49 61 43 88 -109

199 1024 6 5 6 66 44 70 50 65 46 99 -91

211 1024 6 6 4 70 48 74 53 70 50 95 -92

227 1024 6 6 4 76 52 80 58 77 57 97 -92

239 1024 7 6 4 80 56 85 63 83 61 103 -79

251 1024 7 6 4 84 59 91 67 89 66 104 -79

263 1024 7 6 4 88 62 97 72 95 69 105 -79

271 1024 7 6 6 90 65 102 75 99 73 117 -76

281 2048 7 7 4 94 67 97 71 94 69 112 -284

293 2048 7 7 4 98 71 103 76 100 74 113 -285

307 2048 7 7 4 102 75 110 82 107 79 114 -283

317 2048 8 7 5 106 78 116 86 112 83 126 -249

331 2048 8 7 5 110 82 123 93 125 93 128 -249

347 2048 8 7 5 116 86 133 99 141 105 129 -249

359 2048 8 7 8 120 90 140 106 148 111 147 -243

367 2048 8 8 5 122 92 150 112 136 103 136 -219

379 2048 8 8 5 126 96 153 115 142 107 137 -219

389 2048 8 8 5 130 99 159 119 147 111 138 -219

401 2048 8 8 6 134 102 166 127 154 116 145 -217

C Other known attacks

The hybrid attack is by far the most effective attack against NTRU cryptosystems. Nevertheless, there are
other known attacks that need to be considered.

C.1 A combinatorial attack over F2

Now we describe a combinatorial attack that makes use of special structure of secret polynomials f and g.
This attack also relies on q being an even number. For simplicity, we use df = bN3 c to demonstrate this
attack.

Recall that we have
f ∗ h = g mod (XN − 1) mod q.

In our parameter setting, q is always an even number. Therefore, we also have

f ∗ h = g mod (XN − 1) mod 2.

15

This suggests that instead of conducting a combinatorial search on all possible f (which consists of roughly
bN3 c of 1s, 0s and −1s), one can search for all possible f mod 2, that consists of 2bN3 c of 1s and (N − 2bN3 c)
of 0s. In particular, since there are more 1s than 0s for these parameter sets, we try to identify the positions
of 0s rather than 1s.

To do so, one constructs a list of possible binary polynomials where there are roughly N
6 zero coefficients.

Birthday paradox tells us that when this list is big enough, one can expect to have two polynomials in this
list, namely f1 and f2, such that

f1 + f2 = xif mod 2

for some i between 0 and N − 1.

The next task is to detect such collusion when it occurs. The special structure of g helps us with this
task. When f1 and f2 are random ones, we assume that the least significant bits of (f1 + f2)h follows binomial
distribution, while if f1 and f2 forms (a cyclic rotation of) secret polynomial f , then (f1 + f2)h gives (a cyclic
rotation of) secret polynomial g. Consequently, one can simply check (f1 + f2)h mod 2 for collusion.

The above procedure allows us to distinguish 0 coefficients from non-zeros in f . Once we have located
positions of all 0, we also need to separate positive coefficients from negative ones. This can be done by
repeat the above procedure with minor modification. We omit the details, although we remark that the cost
of this step cannot exceed the cost of the previous step, i.e., locating 0s.

In our parameter setting, we have ensured that our parameter sets are secure against this attack for
corresponding security parameter. For example, there are approximately

(
N
bN6 c
)

distinct polynomials, among

which there are around N
(bN3 c
bN6 c

)
good candidates, i.e., polynomials that is a potion of f . This figure comes

from the fact that 1) there are N polynomials that reveals secret polynomial due to cyclic rotations, and 2)

there are roughly
(bN3 c
bN6 c

)
ways to split each polynomial of bN3 c zero coefficients into two polynomials with bN6 c

zero coefficients. There will be duplicates among those good candidates, which we simply neglects to give

more advantage to the attacker. As a result, if one construct a list of
(
N
bN6 c
)
/

√(bN3 c
bN6 c

)
distinct polynomials,

he can hope to have a collusion with the probability of roughly 50%.

In a more general setting where df is not necessarily bN3 c, we need to have(
N

N
2 −df

)√
N
(N−2df

N
2 −df

) > 2k

when df ≥ N
4 and (

N
df

)√
N
(
2df
df

) > 2k

when df ≤ N
4 , where k is the security parameter. The second condition comes from the cases where f is very

sparse, and there is less number of ±1s coefficients combined than 0 coefficient, in which cases we target the
positions of the non-zero coefficients rather than 0s.

Another reason that makes this combinatorial attack unsuccessful is the rate of false positives. We detect
collusions by checking the distribution of (f1 + f2)h mod 2. We have assume that when (f1 + f2 mod 2) is not
(a cyclic rotation) equal to (f mod 2), then its coefficients follow the Binomial distribution. However, even
though most of samples of f1 + f2 will have almost balanced number of 1 and 0 coefficients, there are still a
very large number of samples that have the exact same format as g. Those are the false positive results, i.e.,
a collusion is observed due to probability rather than an actual hit on the secret polynomial. Indeed, when
g is in a balanced form (with around bN3 c 1s, 0s and −1s), the number of false positive samples is so much
greater than correct collusions, the effect to distinguish a sound sample from false positives is beyond the
number of operations allowed to an attacker.

16

Here is some final remarks. This attack works better in the case when either f or g is very sparse. This
attack can also be used to locate g rather than f . All of our parameters are secure against this type of
attacks.

D Tables

D.1 N suitable for use when q is a power of two

Let N be prime, let q be a power of 2, and let m be the order of 2 in (Z/NZ)∗. The N th cyclotomic
polynomial, ΦN (X) = (XN − 1)/(X − 1) has (N − 1)/m degree m irreducible factors mod 2. There are,
consequently, (2m − 1)(N−1)/m invertible elements in Z2[X]/(Φ(X)). Provided that m is sufficiently large,
say N − 1 or (N − 1)/2, the probability that a randomly chosen element is non-invertible is negligible.

Furthermore, while no attacks have been proposed that would exploit the prime ideal factorization of
(2), it seems prudent to avoid additional algebraic structure whenever possible.

With these considerations in mind we suggest that the N parameter be chosen from one of the following
tables when q is taken to be a power of 2.

101, 107, 131, 139, 149, 163, 173, 179, 181, 197,
211, 227, 269, 293, 317, 347, 349, 373, 379, 389,
419, 421, 443, 461, 467, 491, 509, 523, 541, 547,
557, 563, 587, 613, 619, 653, 659, 661, 677, 701,
709, 757, 773, 787, 797, 821, 827, 829, 853, 859,
877, 883, 907, 941, 947, 1019, 1061, 1091, 1109, 1117,

1123, 1171, 1187, 1213, 1229, 1237, 1259, 1277, 1283, 1291,
1301, 1307, 1373, 1381, 1427, 1451, 1453, 1483, 1493, 1499,
1523, 1531, 1549, 1571, 1619, 1621, 1637, 1667, 1669, 1693,
1733, 1741, 1747, 1787, 1861, 1867, 1877, 1901, 1907, 1931.

Table 4. First 100 primes > 100 for which ord(Z/NZ)∗(2) = (N − 1), i.e. (2) is inert

103, 137, 167, 191, 193, 199, 239, 263, 271, 311,
313, 359, 367, 383, 401, 409, 449, 463, 479, 487,
503, 521, 569, 599, 607, 647, 719, 743, 751, 761,
769, 809, 823, 839, 857, 863, 887, 929, 967, 977,
983, 991, 1009, 1031, 1039, 1063, 1087, 1129, 1151, 1223,

1231, 1279, 1297, 1303, 1319, 1361, 1367, 1409, 1439, 1447,
1487, 1489, 1511, 1543, 1559, 1567, 1583, 1607, 1663, 1697,
1759, 1783, 1823, 1847, 1871, 1873, 1879, 1951, 1993, 2039.

Table 5. First 80 primes > 100 for which ord(Z/NZ)∗(2) = (N − 1)/2, i.e. (2) is a product of two prime ideals

E Height of the “cliff”

Given a basis for a lattice of rank m an algorithm that achieves root Hermite factor δ returns a basis with
‖b1‖ ≈ δm det(Λ)1/m.

Under the Geometric Series Assumption (GSA) we have

‖b∗i ‖ = η−(i−1)‖b∗1‖ = η−(i−1)‖b1‖ = η−(i−1)δm det(Λ)1/m.

Furthermore

1 =
1

det(Λ)

m∏
i=1

‖b∗i ‖ = η−m(m−1)/2 δm
2

.

17

So,
η = δ2m/(m−1).

In the hybrid attack setting we reduce a rank m = 2N1 lattice that has determinant qN1+s. Let r1 =
N − N1 − s and r2 = N + N1 − s and let αi = logq(‖b∗i ‖). The height of the cliff is given by αr2 . Under
the assumption that αr1 = 1 the cliff is approximated by 1 − 2N1 logq(η) ≈ 1 − 4N1 logq(δ). However we
can slightly improve this approximation by taking the determinant constraint into consideration. In practice
there is no guarantee that αr1 = 1, in fact with strong reduction there will be another “cliff” at the beginning
of the reduced block. Assuming that the slope, η, is fixed by the basis reduction, we estimate αr1 by requiring
that

∑r2
i=r1

αi = N1 + s. In which case

N1 + s =

r2∑
i=r1

αi

=

r2∑
i=r1

(
αr1 − (i− r1) logq(η)

)
= 2N1αr1 −N1(2N1 + 1) logq η.

Which implies that

αr1 =
N1 + s

2N1
+
N1(2N1 − 1)

2N1
logq(η)

=
N1 + s

2N1
+
N1(2N1 − 1)

2N1

4N1

2N1 − 1
logq(δ)

=
1

2
+

s

2N1
+ 2N1 logq(δ).

In actuality, αr1 = min(1, 1
2 + s

2N1
+ 2N1 logq(δ)), but the error incurred by allowing values greater than 1

seems to be small for most relevant parameter choices.
The cliff height is then

logq(‖b∗m‖) = logq(‖b∗r1‖)− 2N1 logq(η) ≈ 1

2
+

s

2N1
− 2N1 logq(δ). (22)

where the approximation is valid for large N1.

18

