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GENERATE PRIVATE AND 
PUBLIC KEYS, AND 
PUBLISHPUBLIC KEY 

(ROUTINE OF FIGURE 3) 

SIGNING AND ENCODING 
OF DIGITAL MESSAGE 
(ROUTINE OF FIGURE 4) 

ENCODED 
DIGITAL 

SIGNATURE 

VERIFICATION TO ACCEPT 
OR REJECT THE ENCODED 

SIGNATURE 
(ROUTINE OF FIGURE 5) 

FIG. 2 
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Define: 310 
N, a prime 
q, a prime, q = mn+1 
Rq, the ring of polynomials Z g(x)/(xN-1) 
(), a primitive Nth root of unity mod q 
{(i)}, the set of powers of ():{(1)} = {(), o2, o, ...} 
Q, a set of timembers of {0}, t-N/2 
k, an integer, a norm bound for the noise 
k-b, an integer, a norm bound for the signatures 
Rf, the space of private keys, a subset of Rq. 

320 
Randomly selectfin Rf 

330 
Evaluate fat the timembers of () in O. Denote the 
resulting set of tintegers mod q by F(f). 

Store private key f. 340 
Publish the public key FC (f). 

FIG. 3 
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D, the digital message to be signed 
FormatC, an algorithm for Converting a hash value to a 
polynomial with small coefficients 
f, the private key, a Small polynomial In Rq 
l, the hash of the message to be signed 

Randomly generatey, a polynomial with all coefficients 
having absolute value <k 

Calcute. 

FO (y), the set of evaluations of y at the values of () in Q 
h = Hash (FO(y), u) 
C = FormatC (h), c as polynomial with small coefficients 
Z=fk C+ y, a polynomial 

ls Nomo (z) < (k-b)? 

Output (c, z) 

F.G. 4 

  



U.S. Patent Apr. 25, 2017 Sheet S of 5 US 9,634,840 B2 

Input parameters: 
N, a prime 
q, a prime, q =mn+1 
Rq, the ring of polynomials Zg (x)/(xN-1) 
(), a primitive Nth root of unity mod q 
{0}, the set of powers of ():{0}= {(), o2, o3, ...} 
Q, a set oftmembers of {a} t - N/2 
k, an integer, a norm bound for the noise 
k-b, an integer, a norm bound for the signatures 
FormatC, an algorithm for converting a hash value to a 
polynomial with small coefficients 
FO (f), the set of evaluations of the private key fat the 
values of () in C) 
u, the hash of the message to be verified 
(C, z), the signature 

510 

520 ls Norm oo (z) < (k-b)? 

h'= Hash (FQ(z) - F(f)F(c), u), where FO(z) (resp. c) is the 530 
Set of evaluations of Z (resp. C) at the values of () in Q 
c'= FormatC (h') 

540 

551 

F.G. 5 
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DIGITAL SIGNATURE TECHNIQUE 

RELATED APPLICATION 

This application claims priority from U.S. Provisional 
Patent Application No. 61/958,221 filed Jul. 23, 2013, and 
said Provisional patent application is incorporated herein by 
reference. 

FIELD OF THE INVENTION 

This invention relates to the field of cryptography and, 
more particularly, to a public key digital signature technique. 

BACKGROUND OF THE INVENTION 

Public key digital signatures are important for secure 
exchange of information between plural parties, for example 
between computers or mobile devices, or between a smart 
card and a terminal. 

In the late 1990s two of the inventors hereof proposed 
authentication and signature schemes based on the problem 
of recovering a polynomial with tightly concentrated coef 
ficients given a small number of evaluations of that poly 
nomial. The heuristic justification for the security of the 
scheme was that the uncertainty principle severely restricts 
how concentrated a signal can be in two mutually incoherent 
bases. 
An early incarnation of that scheme is described in U.S. 

Pat. No. 6,076,163. and a later version, called PASS-2 was 
described in Hofstein, J., Silverman, J. H. Polynomial 
Rings and Efficient Public Key Authentication II. In: Lam, 
K. Y., Shparlikski, I., Wang, H., Xing, C. (eds.), Cryptog 
raphy and Computational Number Theory, Progress in Com 
puter Science and Applied Logic, vol. 20, pp. 269-286, 
Birkhauser (2001). A summary description of the PASS-2 
technique is included as part of the attached Appendix I. The 
original PASS protocols, which are also described in Appen 
dix I, include the following: Given a message L, a secret key 
f with Small norm, and a public key floff, equal to the 
evaluations of f at the values contained in the set S2, the 
objective is to construct a signature that mixes f and u and 
can be verified by means of fl. A prototype of this was 
presented in the above-referenced U.S. Pat. No. 6,076,163. 

To sign, the signer 
Computes and keeps secret a short polynomial geR, and 

reveals the commitment g/ Fog. 
Computes and reveals a short challenge polynomial ceR, 

from Hash(glou). 
Computes and reveals hig (f-c). 
To verify, the verifier 
Verifies that h has norm less than a specific upper bound. 
Verifies that c-Hash(hl/(flo-cla).L.) 
The first condition for verification is met because 

The fact that |f|, |g|, c are small thus implies that Ih is 
Small. The second condition is true because F is a ring 
homomorphism. 

To forge a signature, a third party would need to produce 
an h which is short, and which satisfies the required evalu 
ations at points in S2. It is conjectured that finding such an 
h is no easier than solving the associated closest vector 
problem. 
The difficulty with this PASS prototype is that a transcript 

of signatures produced by a single signer on any set of 
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2 
messages leaks information about that signer's secret key. 
This is explained further in Appendix I. 
The problem with PASS was not that individual signatures 

leaked information about the secret key, but rather that an 
average over a collection of signatures would converge to a 
secret key dependent value. 

It is among the objects of the present invention to address 
and solve this type of Vulnerability in certain public key 
digital signature techniques. 

SUMMARY OF THE INVENTION 

In accordance with an aspect of an embodiment of the 
invention, a PASS type of digital signature technique is 
devised which employs rejection sampling that assures that 
transcript distributions are completely decoupled from the 
keys that generate them. Background rejection sampling is 
described, for example, in Lyubashevsky, V., Fiat-Shamir 
With Aborts, Applications to Lattice and Factoring-Based 
Signatures, In: ASIACRYPT 2009, pp. 598-616. Springer 
(2009). 

In accordance with an embodiment of the invention, a 
method is set forth for signing and Subsequently verifying a 
digital message, including the following steps implemented 
using at least one processor-based subsystem: selecting 
parameters that include first and second primes, a ring of 
polynomials related to said primes, and at least one range 
defining integer, deriving private and public keys respec 
tively related to a random polynomial private key of the ring 
of polynomials, and to evaluations of roots of unity of the 
random polynomial to obtain a public key set of integers; 
storing the private key and publishing the public key: 
signing the digital message by: (A) generating a noise 
polynomial. (B) deriving a candidate signature by obtaining 
a hash of the digital message and the public key evaluated 
at the noise polynomial, and determining the candidate 
signature using the private key, a polynomial derived from 
the hash, and the noise polynomial, (C) determining whether 
the coefficients of the candidate signature are in a predeter 
mined range dependent on said at least one range-defining 
integer, and (D) repeating steps (A) through (C) until the 
criterion of step (C) is satisfied, and outputting the resultant 
candidate signature as an encoded signed message; and 
performing a verification procedure utilizing the encoded 
signed message and the public key to determine whether the 
encoded signed message is valid. 

In a disclosed embodiment of the invention, said step of 
selecting parameters that include at least one range-defining 
integer comprises selecting parameters that include first and 
second range-defining integers, and the step (C) of said 
signing of the digital message comprises determining 
whether the coefficients of the candidate signature are in a 
predetermined range dependent on said first and second 
range-defining integers. In this embodiment, the first and 
second range-defining integers define norm bound ranges, 
and the step of determining whether the coefficients of the 
candidate signature are in a predetermined range comprises 
determining whether said coefficients are within a range that 
is dependent on the norm bound ranges. 

Further features and advantages of the invention will 
become more readily apparent from the following detailed 
description when taken in conjunction with the accompa 
nying drawings. 
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BRIEF DESCRIPTION OF THE DRAWINGS 

FIG. 1 is a block diagram of a system that can be used in 
practicing embodiments of the invention. 

FIG. 2 is a flow diagram of a public key digital signature 
technique which, when taken with the subsidiary flow dia 
grams referred to therein, can be used in implementing 
embodiments of the invention. 

FIG. 3 is a flow diagram, in accordance with an embodi 
ment hereof, of a routine for key generation. 

FIG. 4 is a flow diagram, in accordance with an embodi 
ment hereof, of a routine for signing and encoding a digital 
message. 

FIG. 5 is a flow diagram, in accordance with an embodi 
ment hereof, of a routine for verification of an encoded 
digital signature. 

DETAILED DESCRIPTION 

FIG. 1 is a block diagram of a system that can be used in 
practicing embodiments of the invention. Two processor 
based subsystems 105 and 155 are shown as being in 
communication over an insecure channel 50, which may be, 
for example, any wired or wireless communication channel 
Such as a telephone or internet communication channel. The 
subsystem 105 includes processor 110 and the subsystem 
155 includes processor 160. The subsystems can typically 
comprise mobile devices, computers, or terminals. When 
programmed in the manner to be described, the processors 
110 and 160 and their associated circuits can be used to 
implement an embodiment of the invention and to practice 
an embodiment of the method of the invention. The proces 
sors 110 and 160 may each be any suitable processor, for 
example an electronic digital processor or microprocessor. It 
will be understood that any general purpose or special 
purpose processor, or other machine or circuitry that can 
perform the functions described herein, electronically, opti 
cally, or by other means, can be utilized. The subsystem 105 
will typically include memories 123, clock and timing 
circuitry 121, input/output functions 118 and display 125, 
which may all be of conventional types. Inputs can include 
a touchscreen/keyboard input as represented at 103. Com 
munication is via transceiver 135, which may comprise a 
modem or any Suitable device for communicating signals. 
The subsystem 155 in this illustrative embodiment can 

have a similar configuration to that of subsystem 105. The 
processor 160 has associated input/output circuitry 164, 
memories 168, clock and timing circuitry 173, and a display 
176. Inputs include a touchscreen/keyboard 155. Commu 
nication of subsystem 155 with the outside world is via 
transceiver 162 which, again, may comprise a modem or any 
Suitable device for communicating signals. 

FIG. 2 illustrates a basic procedure that can be utilized 
with a public key digital signature technique, and refers to 
routines illustrated by other referenced flow diagrams which 
describe features in accordance with an embodiment of the 
invention. Reference can also be made to Appendix I for 
further details of the invention. The block 210 represents the 
generating of the public key and private key signals and 
data, and the publishing of the public key. The routine of an 
embodiment thereof is described in conjunction with the 
flow diagram of FIG. 3. In the present example, this opera 
tion can be performed, for example, at the processor-based 
subsystem 105 of FIG.1. The public key information can be 
published; that is, made available to any member of the 
public or to any desired group from whom the private key 
holder desires to receive the digital signatures. Typically, 
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4 
although not necessarily, the public key may be made 
available at a central public key library facility or website 
where a directory of public key holders and their public keys 
are maintained. 
The block 250 represents a routine that can be employed 

(that is, in this example, by the user of processor-based 
subsystem 155 of FIG. 1) for signing and encoding the 
digital message. This routine, in accordance with an embodi 
ment of the invention, is described in conjunction with the 
flow diagram of FIG. 4. In this example, the encoded digital 
signature is then transmitted over the channel 50 (FIG. 1). 
The block 270 represents a routine that can be employed 

(that is, in this example, by the user of processor-based 
subsystem 155 of FIG. 1) for using, interalia, the public key 
to implement a verification procedure to either accept or 
reject the encoded signature. This routine, in accordance 
with an embodiment of the invention, is described in con 
junction with the flow diagram of FIG. 5. 

FIG. 3 is a flow diagram of a routine, represented by the 
block 210 of FIG. 2, in accordance with an embodiment of 
the invention, for implementing key generation. Reference 
can also be made to Appendix I. The block 310 represents 
the inputting of parameters used in key generation, which 
include: primes N and q (with N being the dimension for 
polynomials of degree N-1 and having N ordered coeffi 
cients, q mN+1, and q>N); Rq, the ring of polynomials 
Zx)/(x^-1); w, a primitive N' root of unity modulo q:{co} 
the set of powers of co, that is, co-co, co, co, ... }: S2 a 
set of t members of (co), with t approximately N/2: k, an 
integer, which is a norm bound for the noise; k-b, an integer 
which is a norm bound for the signatures; and Ra the space 
of private key polynomials, which is a subset of the ring of 
polynomials, R. 
The block 320 represents the random selection of a 

polynomial fin the space R, of private keys. The polynomial 
f is the private key. Then, the block 330 represents genera 
tion of the public key, F(f). F(f) is obtained by evaluating 
the polynomial fat the t members of () in G2. The block 340 
represent the storing of the private key fand the publishing 
of the public key F(f). 

FIG. 4 is a flow diagram of a routine, represented by the 
block 250 of FIG. 2, in accordance with an embodiment of 
the invention, for implementing the signing and encoding of 
a digital message using, interalia, the private key. Reference 
can also be made to Appendix I. 

Referring to FIG.4, the block 410 represents the inputting 
of D, the digital message to be signed, L, a hash of the digital 
message D to be signed, and an algorithm called FormatC, 
which can be used for converting a hash value to a polyno 
mial with small coefficients. (Reference can be made to the 
above referenced U.S. Pat. No. 6,076,163 with regard to the 
function implemented by FormatC.) The block 420 repre 
sents the random generation of a noise polynomial (also 
called a commitment polynomial), designated y, with all 
coefficients having absolute value less than k. Then, the 
block 430 represents the generation of the hash h, the 
polynomial c, and the polynomial Z. Specifically, the hash h 
is obtained by applying a hash function to the public key 
F(y) and L which is the hash of the digital message D. The 
algorithm FormatC is then applied to h to obtain c, a 
polynomial with small coefficients. The polynomial Z, which 
is a candidate digital signature, is then obtained from Z fic-- 
y. 
The decision block 440 represents the step of determining 

whether the coefficients of the candidate signature are in a 
predetermined range, dependent on range-defining integers. 
In this embodiment, a determination is made of whether 
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Norm. (Z) is less than (k-b). If not, the block 420 is 
re-entered, and the process steps of blocks 420, 430 and 440 
are repeated until a candidate digital signature which meets 
the criterion of block 440 is obtained. The block 450 is then 
entered, this block representing the outputting of the quali- 5 
fying candidate signature, that is, the encoded signed mes 
sage Z. Typically the polynomial c, used in obtaining Z (or 
the hash h, from which c can be derived) is also output. 

FIG. 5 is a flow diagram of a routine, represented by the 
block 270 of FIG. 2, in accordance with an embodiment of 10 
the invention, for implementing verification of whether the 
received encoded signed message is valid. Reference can 
also be made to Appendix I. 
The block 510 represents the inputting of parameters that 

include the encoded signed message (c. Z), the hash (p) of 15 
the message to be verified and the public key F(f). Typi 
cally, the other listed input parameters are also made avail 
able; that is: N, q, R., (), {co S2, k, (k-b), and FormatC, as 
previously described. 

In FIG. 5, as represented by the block 520, the verifier first 20 
checks that the encoded signature polynomial has coeffi 
cients in the correct range; that is, for this embodiment, 
determines whether Norm. (Z)<(k-b). If not, the encoded 
signature is rejected. If so, however, the verification routine 

6 
continues, using the public key F(f). The polynomial Z is 
evaluated to obtain F(Z). Since F is a ring homomor 
phism, we have that F(z)=F(f) F(c)+F(y), and the 
verifier can determine F(y) by Subtracting the component 
wise product of F(f) and F(c) from F(Z). The signature 
is then valid if any only if the hash of F(y) along with p (the 
hash of the message D) is equal to the received hash value 
h (or, equivalently, for our purposes, if the short polynomials 
derived from the respective hashes (e.g. using FormatC) are 
equal. As represented block 530 of the FIG. 5 embodiment, 
h' is the hash of (F(Z)-F(f) F(c), u) where F(z) (resp. 
c) is the set of evaluations of Z (resp. c) at the values of () 
in C2, and c' is the short polynomial to which h' is converted 
using FormatC (that is, c'=FormatC(h")). Then if c-c' (block 
540), the encoded signature is accepted (block 551). If these 
quantities are unequal, the signature is rejected (block 552). 
The invention has been described with reference to par 

ticular preferred embodiments, but variations within the 
spirit and scope of the invention will occur to those skilled 
in the art. For example, while a digital signature technique 
has been described, it will be understood that an authenti 
cation producer of the challenge-response-verification type 
can alternatively be implemented, using the technique 
hereof by using the challenge as the message to be signed. 
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Appendix 

Practical Signatures from the Partial Fourier 
Recovery Problem 

Jeff Hofstein, Jill Pipher, John M. Schanck, Joseph H. Silverman', and 
William Whyte 

Brown University, Providence, RI, 02912 
{jhoff, jpipher,jhs}(math. brown.edu. 

* Security Innovation, Willinington, MA 01887 
{js chanck, w whyte (Osecurityinnovation. Com 

Abstract. We present PASSs, a variant of the prior PASS and PASS-2 
proposals, as a candidate for a practical post-quantun signature schene. 
Its hardness is based on the problem of recovering a ring element with 
Small Ilorn fron an incomplete description of its Chinese remainder rep 
resentation. For our particular instantiation, this corresponds to the re 
covery of a vector with small infinity norm from a limited set of its 
Fourier coefficients. 
The key improvement over previous versions of PASS is the introduc 
tion of a rejection sampling technique fron Lyubashevsky (2009) which 
assures that transcript distributions are completely decoupled from the 
keys that generate then. 
Although the Schene is not supported by a formal security reduction, 
We present extensive arguments for its security and derive concrete pa 
rameters based on the performance of state of the art lattice reduction 
and enumeration techniques. 

1 Introduction 

In the late 1990s two authors of the present paper proposed authentication and 
signature schemes based on the problem of recovering a polynomial with tightly 
concentrated coefficients given a small number of evaluations of that polynomial. 
The heuristic justification for the security of the scheme was that the uncertainty 
principle severely restricts how concentrated a signal can be in two mutually 
incoherent bases. 

An early incarnation of the scheme is found in 12, and a later version, called 
PASS-2 was published in 13. A rough description goes as follows. Let N be a 
positive integer, and choose a prime q = r N+1, with r > 1. We will denote by R. 
the ring Zal/(a' - 1), though we will often treat elements of R as vectors in 
Zy equipped with the k-multiplication of R. To avoid confusion, we will denote 
component-wise multiplication of vectors by G). For any (3, with (f3, g) = 1, it 
follows from Fermat's little theorem that 6'N = 1 (mod q). Consequently, the 
mapping f - f(8) is well defined for any f in R. In addition to being well 
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defined, it is also a ring homomorphism, for the simple reason that for any 
f1, f2 e R4, 

(f1 + f2)(3) = f(3) + f2(3) and (if x f.) (6') = f({3)f({3"). 

More generally, for any S2 = {3, 6,..., {3}, the mapping JF : R ? Z given 
by 

Jof = (f(6), f(6),..., f(6)) 
is a ring homomorphism, with addition and G-multiplication modulog done on 
the right hand side. This is an example of the more general phenomenon of the 
ring homomorphism mapping functions to their Fourier transforms. 

In the above setting, the uncertainty principle implies that a ring element 
with a coefficient vector drawn from a small region of Zy will have widely dis 
persed discrete Fourier coefficients. For instance a vector with small infinity 
norm, e.g. with coefficients in {-1, 0, 1}, will likely be supported on all powers 
of a primitive N' root w and will have Fourier coefficients which are essentially 
uniformly distributed in Z. 

The hard problem in PASS can be stated as the following underdetermined 
linear inversion problem, which we will refer to as the partial Fourier recovery 
problem. Let w be a primitive N' root of unity modulo q. We define the discrete 
Fourier transform over Z, to be the linear transformation f f = f; Z - Z. 
given by 

(f) = w'. 
Furthermore, let JF be the restriction of J to the set of t rows specified by an 
index set S, 

(Fo); = w'. 
The partial Fourier recovery problem is: given an evaluation flo e Z, find 

ac with small norm such that a = fla (mod q). 

The problem of recovering a signal from a restricted number of its Fourier co 
efficients is well studied and known to be quite difficult in general. The restricted 
image flo is expected to contain very little information about the unobserved 
Fourier coefficients (the evaluations of f on w for i not in S2), and often the 
Only way to recover f will be an expensive combinatorial optimization proce 
dure. However, there are cases (some quite surprising) in which the problem is 
known to be easy. 

Certainly, ift log q is small, brute force search over f' with appropriate norm 
may be a viable solution - each randomly chosen candidate having essentially a 
q' chance of evaluating to flo. 

The problem is trivial in the larget regime, t > N, since any rank N sub 
matrix of the chosen Vandermonde matrix will be invertible. As t decreases 
slightly below N, or we allow some portion of the coefficients to be corrupted, 
the problem essentially becomes that of decoding Reed–Solomon codes and we 
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can expect to recover f by list-decoding or similar techniques. Efficient recov 
ery of general signals when t is much less than N would have significant coding 
theoretic implications. 

For t in an intermediate range, say t at N/2, the situation is more com 
plicated. Were one to consider the complex Fourier transform rather than the 
number theoretic transform, one might be able to apply techniques from the field 
of compressed sensing. Recent work in this field has delineated cases in which a 
sparse signal can be recovered from a limited number of its (complex) Fourier 
coefficients by an L optimization procedure. For this to be successful the signals 
must be very sparse, having a number of non-zero coefficients which is less than 
S/2 2. It is not clear how these results translate into the finite field setting. 

As far as we are aware, the best technique for solving the partial Fourier 
recovery problem is by solving an associated closest vector problem. Specifically, 
let A'(fa) be the lattice of vectors in the kernel of Jo. That is, 

A' (Fo) = {a e Z : Foa = 0 (mod q)}. 
If, given y e Z, a point ace A" (Fo) can be found such that Ily - all a g, 
then fo(y - ac) = glo and y - act a f3. Since one can easily find (large) 
y such that glo = flo for any evaluation set flo, the ability to solve CVP in 
A' (Fo) implies the ability to solve arbitrary partial Fourier recovery instances 

While there is no known reduction from standard lattice problems to the 
partial Fourier recovery problem, there is at very least a superficial relationship 
between finding short preimages of F and another well studied hard problem. 
A great deal of the research in lattice based cryptography throughout the last 
decade has focused on a type of underdetermined linear inverse problem referred 
to as the small integer solution (SIS) problem, 

SIS is the problem of of finding a vector y in the kernel of a specified linear 
transformation A : Z - Z. such that y is small with respect to a given norm. 
That is, the goal is to solve 

Ay = 0 (mod q) and Ilya (3. 

Ajtai showed in 1) that, for certain parameters and uniform random A, SIS 
enjoys a remarkable average-case correspondence with worst-case lattice prob 
lems. That is to say that the ability to solve random SIS instances with non 
negligible probability implies an ability to find short vectors in any lattice. This 
correspondence between worst and average cases is attractive from a provable se 
curity point of view, offering strong assurance that easy to generate instances of 
the SIS problem will be hard to solve, but it does not yield particularly efficient 
Cryptosystems without additional assumptions. 

The most efficient and compact SIS schemes in the literature are based on the 
ideal-SIS problem, wherein the matrix A is replaced by several uniform random 
elements, a1, a2, ... ak of a quotient ring R = Z(a)/(p). The polynomial p is 
typically, but not necessarily, cyclotomic. A solution to deal-SIS is y1, y2, ... y. 
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in the ring such that: 
k : 

XCaxy, = 0 and XIly, I's 6°. 
i= ise 

These schemes derive their security from the presumed hardness of ideal 
SVP - the shortest vector problem in the restricted class of lattices generated by 
matrix representations of elements of R. Reductions from worst-case laeal-SVP 
to average-case laeal-SIS were presented in 17 (20). Unfortunately, even with 
the reduced storage requirements and fast multiplication algorithms available in 
Some rings, provably secure lodeal-SIS based constructions are still too inefficient 
to be competitive with existing (non-quantum resistant) schemes. 

The security of PASS can be said to rest on the assumed average-case hard 
ness of Vandermonde-SIS. We are not aware of any technique for reducing a 
Worst-case lattice problem to Vandermonde-SIS, nor will we postulate the exis 
tence of such a reduction. We do however raise the question of whether there 
might be a characterization of hard instances of SIS which does not rely on 
structural properties of the matrix A. Or more generally, when is a constrained 
linear inverse problem hard? 

We believe an answer to this problem would likely simultaneously explain 
the hardness of Uniform-, ldeal- and Vandermonde-SIS, as well as delineate new 
classes. 

2 Related Work 

2.1 The original PASS protocols 

Given a (padded) message u, a secret key f with small norm, and a public key 
flo a fif, the objective is to construct a signature that mixes f and pu, and 
can be verified by means of flo. A prototype of this was presented in 12. 

To sign, Alice 

o Computes and keeps secret a short polynomial ge. R and reveals the com 
mitment glo = fog. 

o Computes and reveals a short challenge polynomial c e R from Hash (glo, pu). 
O Computes and reveals h = g k (f -- c). 
To verify, Bob 

O Verifies that h has norm less than a specific upper bound. 
O Verifies that c = Hash(h/(fl. + C), u) 

The first condition for verification is met because 

|g k (f +c) || r Ig f -- c. 



US 9,634,840 B2 
15 16 

The fact that |f|, |g|, |clare small thus implies that his small. The second 
Condition is true because JF is a ring homomorphism. 

To forge a signature, a third party would need to produce an h, which is short, 
and which satisfies the required evaluations at points in S2. It is conjectured that 
finding such an h is no easier than solving the associated CVP. 

2.2 Transcript weaknesses in previous PASS protocols 

The difficulty with this PASS prototype is that a transcript of signatures pro 
duced by a single signer on any set of messages leaks information about that 
signer's Secret key. One way to see this is via a ring homomorphism p : R - R. 
given by 

p(ao + a1ac + ayac' + + ay-1 ac') = an +-an-ac + an-2ac’ + . . . + anac''. 
The homomorphism p plays the same role that conjugation would play if a were 
replaced by a primitive N' root of unity. If a polynomial pe R is drawn 
randomly from a distribution, let Elp denote the expectation of p, that is, the 
average of pover many samples. A third party observing many examples of 
g k (f - c) could compute 

Eg k (f -- c) k p(g k (f+c)) = Egk p(g) E(f -- c) k p(f+c) 
For simplicity assume that Ec = 0, then, since f is constant, the above becomes 

Egxp(g) (Eck p(c) + fix p(f)). 

The distributions from which c and g are drawn are known, and thus a suffi 
ciently long transcript will reveal fx p(f) from which f may be computed by a 
technique from Gentry and Szydlo 8. 

2.3 Recent developments and countermeasures 

The problem with PASS was not that individual signatures leaked information 
about the secret key, but rather that an average over a collection of signatures 
would converge to a secret key dependent value. This is not a concern for signa 
ture schemes based on number theoretic trapdoor permutations, as such schemes 
enjoy relatively simple proofs that their signatures are uniformly distributed over 
the full range of possibilities. However, the requirement that PASS signatures 
have small norm, i.e. that they occupy a small region of the full domain, neces 
sitates throwing out much of the algebraic structure that makes such uniformity 
"The original PASS protocol used the centered L’ norin - the L* norm about the 
Inean of the vector. This norIn can be seen to enjoy the above quasi-multiplicative 
property for independent randon polynomials by considering the product in the 
complex Fourier domain, noting that the centering operation has the effect of zeroing 
the constant terms, and by applying Parseval's theorem. 
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guarantees possible. Full decoupling of secret keys from transcripts was a diffi 
cult barrier for the construction of secure lattice based signature schemes, and 
more so for the construction of efficient schemes. 

The first successful decoupling, the signature scheme of Gentry, Peikert, and 
Vaikuntanathan 7, involved computing a candidate signature point ac and then 
adding noise sampled from a discrete Gaussian distribution centered at -ac. The 
resulting signatures have a distribution which is computationally indistinguish 
able from a spherical discrete Gaussian centered at the origin. 

Lyubashevsky, in 14, constructed a lattice based identification scheme which 
avoids transcript analysis attacks with a technique he called “aborting.” In this 
scheme, provers are capable of determining when their response to a challenge 
will leak information about their secret key. Whenever this occurs they abort 
the protocol rather than supply a response. 

In 15, Lyubashevsky improved his aborting technique and constructed a 
signature scheme through the Fiat-Shamir transform with hardness based on 
the Ring-SIS problem. Improvements and variants of this scheme with different 
hardness assumptions were presented in 16). 

The first truly practical lattice signature scheme to avoid transcript attacks 
was developed by Gineysu, Lyubashevsky, and Pöppelmann 9. Their scheme is 
a highly optimized variant of 16 and relies on a stronger hardness assumption. 

The current state of the art would appear to be the new scheme, called BLISS, 
by Ducas, Durmus, Lepoint, and Lyubashevsky (4). This scheme makes use of 
an NTRU-like key generation procedure and a bimodal discrete Gaussian noise 
distribution to produce very compact signatures. The efficiency of the scheme is 
also very impressive, especially considering the complexity of sampling discrete 
Gaussians. 

3 PASSRs - PASS with Rejection Sampling 

N - Dinension 
q - Prime E 1 (mod N) 
g - a primitive N' root of unity in Z. 
$2 - A subset of g : 1 < i < N-1} 
t - S. 
k - Infinity norm of noise polynomials 
b - l-norin of challenge polynomials 

Table 1: Public parameters 

We now present PASSRs a new variant of PASS which completely decouples 
the transcript distribution from the secret key. Table 1 lists the public parameters 
of the System and gives a brief description of each. 
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Some notes on notation: R is the ring Zac)/(ac' - 1); elements a e Ra 
are represented as polynomials a = no + a1ac + a2ac' + + a N-1a:'', with 
coefficients in at e Z. We freely transition between this polynomial representa 
tion and a coefficient vector representation, a = ao, a1, a2, ..., a N-1, wherever 
convenient. 

Norms, such as ||al and all, are the standard LP norms on coefficient 
vectors; for numerical calculations we consistently identify a with an integer 
such that at a q/2. 

We write B(b) to denote the elements of R with 1-norm < b, and 3(k) 
to denote the elements of R with co-norm < k. 

Lastly, The indicator function 1s (ac) yields 1 if ace S and 0 otherwise. 

3.1 Key Generation 

A secret key is a polynomial with L norm equal to 1. We recommend the 
simple strategy of choosing each coefficient independently and uniformly from 
{-1, 0, 1}. Binary coefficients, though attractive for several reasons, would open 
the system up to a UniqueSVP gap amplification attack similar to that used by 
Nguyen in his cryptanalysis of GGH 19. 

The public key corresponding to the secret key f is flo = JFf. 

3.2 Signing 

Signing is an iterated process consisting of the generation of a candidate signa 
ture followed by a rejection sampling step to prevent the publication of candi 
dates that could leak secret key information. 

A party with secret key f, who wishes to sign a message u, first selects a 
commitment polynomial y uniformly at random from B(k). The commitment 
y serves to mask the private key and must be treated with the same care as the 
private key itself. The signer then computes and stores j = Foy, which will 
ultimately be made public if the candidate passes rejection sampling. 

Next, the signer computes a challenge, c, which binds j to pu, To do so she 
makes use of the public algorithms: 

Hash: Z, X {0,1} - {0,1}, and 
FormatC: {0,1} - 3(b). 

Hash concatenates its imputs and passes the result through a cryptographic hash 
function such as SHA-512. FormatC maps the set of bitstrings output by Hash 
into a set of sparse polynomials. We avoid further description of the algorithms 
for now and simply say that 

c = FormatC(Hash (jo, u)). 
Note that the generation of y and the computation of jli can both be done offline, 
oblivious to the message to be signed. 
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Finally, the signer computes a candidate signature point 

2 = f'k c + y e R, 
if any of the coefficients of z fall outside the interval -k- b, k - b, then y, C, 
and 2 are discarded and the signing process is repeated. Otherwise, the signer 
outputs the signature (c. 2, u). 

In section 4 we will prove that signatures that pass the rejection sampling 
procedure have 2 values that are uniformly distributed over B(k - b). 

3.3 Verification 

The signature (c, z, u) is valid if z is in B (k - b) and if 
c = FormatC(Hash(zla-floo elo, u)). 

Since for is a ring homomorphism, it is the case that 2n = flo G) Co. +ls. 
Therefore, on receipt of (c, 2, u), any verifier in possession of the appropriate 
public key fin can evaluate z and c and compute jila = 2n - fla Ocllo. The 
correctness of the scheme is immediate. 

Algorithm 1 Sign Algorithm 2 Verify 
Input: (u, f) Input: (c, z, p, fln) 
l: repeat 1: result - invalid 

2: y S. B^(k) 2: if z e B(k - b) then 
3: h - Hash (jn, pl.) 3; h' - Hash (2n - fla () cla, u) 
4: c - FormatC(h) : c' - FormatC(h') 
5: 2 - if k c -- ty if c - c' then 

4. 
5: 

6: until z e B(k - b) 6: result - valid 
Output: (c. 2, u) 7 

Output: result 

4 Rejection Sampling 

Each iteration of the signature generation routine produces a candidate signature 
which is accepted or rejected based on its infinity norm alone. In this section 
we will argue that this rejection sampling procedure completely decouples the 
distribution of signature points from the private key. 

We will make use of the following fact: 
Fact 1 Each candidate signature z is in B(k+b). 
Proof. By definition we have I2 = If k c + y, and by the triangle in 
equality: If k c + y < If k c + |y|. Again by the triangle inequality, 
If k cle s lif|| ||c., thus 
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We will also make use of the following assumption on instantiations of Hash 
and FormatC. 

Assumption 1 Let the public parameters (N, q, k, b, S2) be faced and let c e 
B(b), ye B(k), u e {0,1}" be random variables related by 

c = FormatC(Hash (jo, pu)). 
We assume that Hash is a collision resistant hash function, that c and y are 
independent, and that c is uniform over the range of FormatC. More earplicitly, 
for any faced co e B (b) and ficed yo e B(k), 

Pric = Col Pry = yo) 1-1 
Pry = yo = B(b). 

Note that assumption 1 is no stronger than the standard random oracle as 
sumption, so the reader may assume we are working in the random oracle model. 
We state the assumption in the above form to aid in the analysis of concrete 
instantiations. Clearly the assumption that the joint distribution of y and c 
factors is untenable - no deterministic instantiation of Hash can satisfy it while 
maintaining collision resistance. Yet by choosing an appropriate padding scheme 
for u one should be able to approximately satisfy the assumption. We leave the 
exploration of padding schemes and analysis of the practical impact of assump 
tion 1 to future work. 

Pro = Co y = yo = 

The following proposition describes the distribution of candidate signatures. 

Proposition 1. Fir vectors foe B(1) and zo e B(k+b). Then as the pair 
(c, y) is chosen uniformly from the space B (1) x B(k), we have 

Pr(fox c + y = zo) = |B(k)|' X Pric = col18s (k)(zo-fok co). 
coe 3(b) 

Proof. For any fixed co e B (b) we have 
Prfok Co. + y = zo) = Pry = 20 - fox co.) 

R (ror if (zo - fox co) e B(k) 
O otherwise. 

By application of the law of total probability and the assumption that the c and 
y are independent: 

Pr(fox c + y = 20) = X Pric = co Prfox c + y = zo c = Co 
coeb (b) 

X Pric = coPry = zo-fok co 
coe 3(b) 

|B(k)|' X Pric = col 18-(e)(zo - fox co). 
coe B (b) 
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Recall from section 3.2 that a candidate signature is rejected unless its 2 
component is contained in B (k - b). The following proposition shows that each 
point in 3 (k - b) is selected as a candidate signature with equal probability. 

Proposition 2. Fic vectors f in B^(1) and 20 in 3°(k-b). Then as the pair 
(c, y) is chosen uniformly from the space 3(b) x 3(k), we have 

Pr(fox c + y = zo) = 13(k)'. 

Proof. We first note that 3 (k-b) is contained within 3(k+b), so proposition 
1 applies. Additionally, it is the case that |zoH g k - b and consequently, for 
any fixed co e B'(b), we have ||zo - fox collak. Thus zo-foxco is contained 
in B(k) and the indicator function in proposition 1 is unconditionally satisfied. 
Therefore, 

Pr(for c + y = zo) = |5°(k) X Pr(c = col= |B^(k)'. 
coe B (b) 

Proposition 2 informs us that each of the B° (k - b) acceptable signature 
points is chosen with probability |b(k). We infer that each pass through 
the signature generation routine has probability 

P = ( – 2b y - Praccept = |Bos(k) 2k 1) f 

of generating a valid signature point, where the approximation is valid provided 
that both N and k/b are large. 

A transcript is a set of signatures published by an honest signer. For in 
stance, a signer who uses private key f to sign messages pull, pu2,..., puk produces 
a transcript 

T = {(C, 2;): (c., 2, u;) = Sign (ui,f)}. 

Proposition 3. A transcript T generated by an honest signer uith private key f 
is indistinguishable from a set of points draum uniformly from 3(b) x 3 (k-b). 
Furthermore, for any ficed co e B'(b), zo e B(k-b) and foe B (1), the events 
(co, 20) e T and f = fo are independent. 

Proof. The c components of T are uniformly distributed over 3(b) by assump 
tion 1. Proposition 2 establishes not only that the z components of T are uni 
formly distributed over B(k-b), but also that the distribution of 2 depends only 
on the distribution of y. Again by assumption 1, c and y are independent and 
therefore c and 2 are independent. The distribution of transcript points is conse 
quently the product distribution of c and 2, i.e. uniform over B (b) x B(k-b). 

Independence of transcript points from the secret key follows from the fact 
that proposition 2 holds for all choices off in B (1). 
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5 Security Analysis 

Our security analysis will focus on two types of attacks, those that target the 
hash function (or the combination FormatCo Hash), and those that target the 
partial Fourier transform fo. Other attacks may be possible, and investigating 
them is an area for future work. 

As our aim is to develop a practical quantum-resistant signature scheme, we 
will assume that the adversary has access to a quantum computer. Relatively 
little is known about the existence or non-existence of quantum algorithms for 
lattice problems, so our assumptions related to quantum computers will only 
address their ability to solve k-element black-box search problems in e(vk) 
time. 

5.1 Attacks on the hash function 

The most obvious constraint on the security of the system comes from the en 
tropy of c. An adversary who can find a Hash preimage of a particular c can 
produce forgeries on structured messages from any user's public key. To do so, 
the adversary: 

1. Chooses arbitrary 2 and c from the appropriate domains. 
2. Computes glo = 2 - fic G co, where flo is the victim’s public key. 
3. Finds a preimage of c in Hash(Go, ). 
While attacks against specific hash functions can have arbitrarily low com 

plexity, we will assume that a strong hash function is chosen, and only consider 
generic attacks. If the output of Hash is r bits, a quantum adversary can find 
preimages in time e(2/'). For K-bit security, the range of FormatCo Hash should 
produce an essentially uniform distribution on a set of cardinality 2*. 

5.2 Attacks on the partial Fourier transform 
An adversary who can find Fo preimages which are in 3 (k - b) can forge 
signatures on arbitrary messages from any user's public key, 
1. Adversary chooses random point g in B(k) 
2. cF = FormatC(Hash(Fog, u)) 
3. z Flo = grio + flocFlo 
4. Adversary uses preimage attack on 2Fs to find appropriate z F. 
Adversaries could also try to recover the secret key directly with their preimage 
algorithm, but in order for this to be effective they must be able to find ex 
Ceptionally short preimages. The problem of secret key recovery seems, at least 
intuitively then, to be harder than forgery. Yet, surprisingly, given the particular 
parameters of the scheme, lattice attacks may be better suited for solving the 
Secret key recovery problem than they are for forging messages. Some care must 
be taken when choosing parameters to balance the difficulty of the two problems. 
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Lattice attacks on 7 As mentioned briefly in the introduction, the partial 
Fourier recovery problem can easily be seen to be no harder than a specific class 
of closest vector problem CVP. Presented with the evaluation set, S2, and a partial 
Fourier representation 26, an adversary can construct a lattice in which solving 
the CVP associated to any arbitrary preimage of 2 allows them to construct a 
short preimage of 2. 

That lattice, which we denote A (Fo), is equivalent to the kernel of Fo, 
A' (Fo) = {a e Z. : Joa = 0 (mod q)}. 

In practice, CVP instances are almost always solved by transforming the 
problem into an SVP in dimension N + 1. If z' is an arbitrary preimage of the 
target 2c, i.e. fo2' = 2 but ||2' is large, and b1, b2,..., b} form a Hermite 
Normal Form basis for A (Fo), then solving SVP in the lattice generated by the 
columns of 

g O b10 bn,0 26 

CSyP 0 g b1, t-1 ... bm.t-1 2-1 
z' 0... O : 

; : b1,N-1 ... bm,N-1 2-v- 
O ... O 0 . . . O l 

is likely to yield a short 2 such that JFo2 = 2. 
Experiments by Micciancio and Regev (18 have demonstrated that lattice 

reduction algorithms perform best against the kernel lattices, A'(A), oft x N 
matrices A when N as Vt log(g)/log(y) for some y as 1.01 determined experi 
mentally for each reduction algorithm. In the PASSRs setting this places restric 
tions on t and q that we have obeyed in all of our proposed parameter sets. As 
such there should be no benefit to attacking a sublattice of CV, and we proceed 
under this assumption. 

The performance of lattice reduction algorithms, particularly LLL and BKZ, 
on lattices such as CE is difficult to analyze in practice. Perhaps the most 
Surprising complicating factor is that the performance depends crucially on the 
Coset of Z/A (Fo) to which z' belongs, and not strongly on 2' itself. This 
dependence gives rise to two regimes that we will analyze separately. The ex 
treme case, when z is very close to the kernel lattice, produces instances of 
the UniqueSVP problem and determines the difficulty of the secret key recovery 
problem in PASSRs. The average case produces instances of ApproxSVP which 
will inform our discussion of the signature forgery problem. 

UniqueSVP is the problem of finding a shortest vector in a lattice that is 
known to have a significant gap between the lengths of its first and second 
Successive minima. Such is the case in the lattices c;YP as the the secret key, 

f, has an expected norm of V2N/3 and (f, 17 e CY. 
"Curiously, the fact that the kernel lattice always contains the exceptionally short 
vector 1, 1,..., 1 seems to have no impact here. 
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Lattice reduction algorithms can be ranked according to the so-called Her 
mite factor that they achieve. Algorithms that achieve Hermite factor Y can 
be expected to find the shortest vector in a lattice when the UniqueSVP-gap, 
A2 (C)/A1(C), is greater than a constant fraction of y. This behavior was first ex 
amined by Gama and Nguyen, whose experiments determined that for a certain 
class of random lattices the constant is approximately 0.485). They exhibited 
classes of lattices for which the constant was smaller, but these appear to be 
Somewhat exceptional. Ducas et al. 4) performed similar experiments on the 
lattices that occur in BLISS, and found the constant again to be 0.48, and we 
have found the same to be true of the lattices related to PASSs. 

Table 2 contains estimates on the Hermite factor needed to recover PASSRs 
secret keys at several concrete parameter levels. We estimate X(CY ) by the 
Gaussian heuristic in the L' norm. This predicts that N successive minima of 
a lattice will be tightly clustered around the radius of the smallest N-ball that 
has volume equal to the determinant of the lattice. The q-ary lattices, A' (Fo), 
have determinant q', and the Gaussian heuristic therefore predicts 

A2 (CY) = x1 (A" (Fo)) & det(A" (fo))/ VA = q' Wit. 
As mentioned above, we estimate X1 as V2N/3, the length of the secret 

key. This gives us a UniqueSVP-gap, X2/X as q"/NV3/(4tte). Incorporating the 
Constant 0.48 adjustment, we find that lattice reduction algorithms must achieve 
Hermite factor 

y = 0.62. '7N (1) 
in order to recover PASSRs secret keys. 

The analysis for forgery attacks is very similar, only now the target 2 will 
lie in an essentially random coset of Z/A (Fo). The relevant problem is now 
ApproxSVP the problem of finding a short vector that is more than a factor of 
being optimal, in other words a vector that is no longer than ox1 (CY). Lattice 
reduction algorithms that achieve Hermite factor y can solve ApproxSVP with 
factor a = n in the worst case. That said, a = y seems achievable on average 5), 
So we use this estimate in our analysis. 

PASSRs signatures are validated by the L norm, but lattice reduction al 
gorithms typically only guarantee the L' norm of their results. A vector of L' 
norm VN-(k-b) could potentially serve as a forgery, but this is highly unlikely. 
We estimate the approximation factor to be the ratio of the expected length of 
a forgery to the volume of the lattice, which is 

a = VN. V/g'/N, (2) 
where V is the variance of the discrete uniform distribution on-k+b, k - b. 

Concrete performance of lattice reduction algorithms Current folklore 
is that lattice reduction algorithms can achieve Hermite factor as 1.01 in rea 
sonable time but that Hermite factor 1.005 is completely out of reach. These 
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are useful heuristics, but they reflect more our ignorance about the concrete 
performance of lattice reduction and enumeration algorithms than they do our 
knowledge. Unfortunately, it seems that we know far too little about how these 
algorithms perform in high dimension to give precise “bit-security” estimates. 
We can, however, roughly determine which of the currently available lattice re 
duction algorithms might be useful for attacking PASSRs. 

Experiments by Schneider and Buchmann (21 indicate that the Hermite 
factor reachable by BKZ with blocksize (3 is approximately: 

1.01655 - 0.000196.185. (3, 

which for Hermite factors relevant to our parameter sets yields: 

Blocksize (3) 15 30 40 55 
Root Herrite factor 101361.01.07 1-00871.0058 

Table 2 lists several PASSRs parameter sets, the line labeled “Lattice security 
factor” represents our best guess as to the Hermite factor needed to launch either 
a key recovery or forgery attack (whichever is easier). We expect that our toy 
parameter set, N = 433, could be defeated by running BKZ-15 to completion. 
Although we do not have a good estimate on how long this would take, it should 
be possible with current technology. 

Our other parameter sets should be significantly more difficult to attack. 
While Hermite factor 1.01 is nominally within reach of today's technology, 
this has only been verified in relatively small dimensions. We know very little 
about how the algorithms will perform in dimension 577. Key recovery attacks 
on this parameter set should be possible with BKZ-30, but other approaches are 
likely needed to make the attack practical. 

Chen and Nguyen have had impressive success with their BKZ-2.0 algorithm 
3), which combines extreme pruning, developed in (6), with an early termination 
procedure, theoretically justified by 11. BKZ-2.0 runs BKZ at phenomenally 
high blocksizes for a small number of rounds under the experimentally justified 
belief that most of the progress of BKZ is made in the early rounds. It is difficult 
to extrapolate security estimates from the results published thus far on BKZ 
2.0's performance, but it would appear that our 577, 769, and 1153 parameter 
sets could be within reach of terminated BKZ-75, 122, and 229 respectively. 

For N = 577, our experiments with a BKZ-2.0 simulator similar to that 
presented in 3 indicate that 56 rounds of BKZ-75 would be sufficient to reach 
root hermite factor 1.01.06; for N = 769, 47 rounds of BKZ-122 would suffice to 
reach 1.0084; and for N = 1153, 42 rounds of BKZ-229 would reach 1.0058. 

Following the analysis of 3), we expecte enumeration to be the most expensive 
subroutine of BKZ-2.0. Each round consists of approximately N enumerations, 
and the cost of each enumeration depends on the the number of nodes visited in 
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the enumeration tree. The estimated bit security is 

log2(N rounds) + log(nodes per enumeration) + log(cost per node) 

Using number-of-node and cost-per-node estimates from 3, we have that the 
estimated Security of our N = 769 parameter is log(769.47)+53+log(200) as 76 
bits. 

For N = 1153, a single enumeration in BKZ-229 is expected to take over 2 
time, which is greater than the expected time for a quantum attack on the hash 
function. 

N 
775937743177.104.7379,968521 

g 2686732961OS 421722. 56574 
k : 

t 

Pr Accept 
UniqueSVP gap 1,017 100.93 1.0075 100.52 

ApproxSWP factor 1.010.5 OO1 OO81 1.0054 
Lattice security factor 1.0134.01.06 1.0084. 1.0.058 

Entropy of c 
Bit-security bound I < 62 < 80 < 100 < 130 

Table 2: Parameter sets and security indicators. UniqueSVP gap refers to X2/X1 
without any correction for the performance of specific lattice reduction algo 
rithms. 

6 Reference Implementation 

We have created a reference implementation of PASSss in C and made it avail 
able under the GNU General Public License. Table 3 gives some idea of the 
performance of PASSRs relative to the recent proposal of Ducas et al. (BLISS (4) 
and to RSA and ECDSA. BLISS was tested using the June 13, 2013 version. The 
implementations of RSA and ECDSA are from OpenSSL 1.0.1e. All benchmarks 
were run on a single 2.8GHz core of an Intel Core i7-2640M with hyper thread 
ing and turbo boost disabled. We make no claims as to the accuracy of these 
benchmarks - the timing methods used internally by the three libraries tested 
are incommensurate and many variables have been left uncontrolled. However, 
we do feel that these preliminary performance estimates are worth reporting, as 
they indicate that the schemes are competitive with each other and that further 
Comparisons would be interesting. 

" https://github. com/NTRUOpenSource Project/intru-crypto 
http://bliss. di. ens.fr/ 
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6.1 Performance considerations 

The two most computationally intensive parts of PASSRs are the number theo 
retic transforms (NTT) used to compute Fo, and the sparse cyclic convolution 
used in Computing z = f k c + y. To compute Fo we use Rader's algorithm to 
decompose the prime length NTT into cyclic convolution of length N - 1. We 
compute the resulting convolution as a pair of Fourier transforms over C using 
version 3.3.3 of FFTW. For all of the parameter sets presented above we have 
chosen chosen N to be a Pierpont prime (a prime of the form 2'.3' +1) as these 
yield very fast Fourier transform algorithms. Fermat primes (2' + 1) would yield 
a faster transforms, but there are no Fermat primes in our preferred parameter 
range. O 

We have made little effort to optimize the computation of sparse convolutions, 
and these often dominate the running time of the signing process. 

6.2 Concrete instantiations of public functions 

Our reference implementation uses SHA-512 to instantiate Hash for all parameter 
sets. The input passed to SHA-512 is the concatenation of the low order byte of 
each coefficient of glo followed by the SHA-512 digest of u. 

Hash (, u) = SHA-512(lowbyte (jo) ... lowbyte(j-) I SHA-512(u)) 

We have not implemented any message padding. 
Our instantiation of FormatC sets aside the first 64 bits of ho = Hash (jo, pu) 

to use as signs of the nonzero coefficients of c. The remaining bits of ho are used, 
16 at a time, in a rejection sampling procedure to generate uniform random 
values in the interval 0, N-1). Each such value becomes the index of a non-zero 
coefficient of c. If the pool of bits is ever exhausted, the process continues on 
hi = SHA-512(hi-1). 

The random coefficients of y are generated by a rejection sampling procedure 
on the output of a stream cipher. Specifically we use the procedure from 10 
of keying the Salsa20 stream cipher with a short seed from the Linux kernel 
random number generator. 

Sign Verify P 
Median AverageMedian Average 

577 121996 171753 86828 87031 
769 174900 205456 120204 120374 
153 421904 584230 172428 172641 

Table 4: Sandy Bridge cycle counts for PASSs. 100k samples 
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Algorithin Parameter SetSign (us)Verify (us)Sig. (bytes)Pub. key (bytes) 
577 62 31 1115 
769 73 40 1578 
1153 2O3 69 2360 

O 25 
I 44 

II 43 
III 45 
IV 47 

1024 225 15 
IRSA 2048 1591 50 

4096 11532 185 
secp160r1 80 270 

ECDSA nistp256 146 348 
nistp384 268 115 

Table 3: Benchmarks. Times are averages over many operations. 
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The invention claimed is: 
1. A method for signing and subsequently verifying a 

digital message, comprising the following steps imple 
mented using at least one processor-based subsystem: 

Selecting parameters that include first and second primes, 
a ring of polynomials related to said primes, and first 
and second range-defining integers; 

deriving private and public keys respectively related to a 
random polynomial private key of the ring of polyno 
mials, and to evaluations of roots of unity of the 
random polynomial to obtain a public key set of 
integers; 

storing the private key and publishing the public key; 
signing the digital message by: (A) generating a noise 

polynomial. (B) deriving a candidate signature by 
obtaining a hash of the digital message and the public 
key evaluated at the noise polynomial, and determining 
the candidate signature using the private key, a poly 
nomial derived from the hash, and the noise polyno 
mial, (C) determining whether the coefficients of the 
candidate signature are in a predetermined range 
dependent on said first and second range-defining inte 
gers, and (D) repeating steps (A) through (C) until the 
criterion of step (C) is satisfied, and outputting the 
resultant candidate signature in electronic form as an 
encoded signed message; and 

performing a verification procedure utilizing the encoded 
signed message and the public key to determine 
whether the encoded signed message is valid and 
outputting, in electronic form, an indication of validity 
or invalidity. 

2. The method as defined by claim 1, further comprising 
transmitting the encoded signed message, and wherein said 
step of performing a verification procedure includes receiv 
ing the transmitted message and performing the verification 
procedure on the received message. 

3. The method as defined by claim 2, wherein said digital 
message comprises a challenge communication from a veri 
fier entity, and wherein said encoded signed message is 
transmitted to said verifier entity. 

4. The method as defined by claim 1, wherein said first 
and second range-defining integers define norm bound 
ranges, and wherein said step of determining whether the 
coefficients of the candidate signature are in a predetermined 
range comprises determining whether said coefficients are 
within a range dependent on a difference between the norm 
bound ranges. 

5. The method as defined by claim 4, wherein said first 
and second range-defining integers respectively comprise an 
integerk, which is the infinity-norm of the noise polynomial, 
and an integer b, which is the 1-norm of the noise polyno 
mial, and wherein said step of determining whether the 
coefficients of the candidate signature are in a predetermined 
range comprises determining whether said coefficients are 
within the range -(k-b) to (k-b). 
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6. A method for signing and subsequently verifying a 

number of digital messages in a manner which protects 
against a transcript attack, comprising the following steps 
implemented using at least one processor-based subsystem: 

Selecting parameters that include first and second primes, 
a ring of polynomials related to said primes, and first 
and second range-defining integers; 

deriving private and public keys respectively related to a 
random polynomial private key of the ring of polyno 
mials, and to evaluations of roots of unity of the 
random polynomial to obtain a public key set of 
integers; 

storing the private key and publishing the public key: 
signing each of the digital messages by: (A) generating a 

noise polynomial. (B) deriving a candidate signature by 
obtaining a hash of the digital message and the public 
key evaluated at the noise polynomial, and determining 
the candidate signature using the private key, a poly 
nomial derived from the hash, and the noise polyno 
mial, (C) determining whether the coefficients of the 
candidate signature are in a predetermined range 
dependent on said first and second range-defining inte 
gers, and (D) repeating steps (A) through (C) until the 
criterion of step (C) is satisfied, and outputting the 
resultant candidate signature in electronic form as an 
encoded signed message; and 

performing a verification procedure for each encoded 
signed message by utilizing the encoded signed mes 
sage and the public key to determine whether the 
encoded signed message is valid and outputting, in 
electronic form, an indication of validity or invalidity; 

whereby a transcript of said encoded signed messages 
does not reveal information about the private key 
polynomial. 

7. The method as defined by claim 6, further comprising 
transmitting the encoded signed messages, and wherein said 
step of performing a verification procedure includes receiv 
ing the transmitted messages and performing the verification 
procedure on the received messages. 

8. The method as defined by claim 6, wherein said first 
and second range-defining integers define norm bound 
ranges, and wherein said step of determining whether the 
coefficients of each candidate signature are in a predeter 
mined range comprises determining whether said coeffi 
cients are within a range dependent on a difference between 
the norm bound ranges. 

9. The method as defined by claim 6, wherein said first 
and second range-defining integers respectively comprise an 
integerk, which is the infinity-norm of the noise polynomial. 
and an integer b, which is the 1-norm of the noise polyno 
mial, and wherein said step of determining whether the 
coefficients of the candidate signatures are in a predeter 
mined range comprises determining whether said coeffi 
cients are within the range -(k-b) to (k-b). 


