Cost estimates for quantum preimage attacks

Matt Amy, Olivia Di Matteo, Vlad Gheorghiu, Michele Mosca, Alex Parent, John Schanck

Institute for Quantum Computing
University of Waterloo

February 26, 2016
Given a bijection
\[H : \{0, 1\}^k \rightarrow \{0, 1\}^k, \]
Grover’s algorithm finds the preimage of
\[y \in \{0, 1\}^k \]
using \(\Theta(\sqrt{2^k}) \) queries to an oracle that computes
\[f : \{0, 1\}^k \rightarrow \{0, 1\} \]
\[x \mapsto \delta(H(x), y). \]
To estimate the cost of Grover’s algorithm...

Write down a circuit.

|0⟩ → H → G → G → G → ...
|1⟩ → H → G → G → G → ...
To estimate the cost of Grover’s algorithm...

You’ll need the cost of one Grover iteration

So you want to break a hash function...
To estimate the cost of Grover’s algorithm...

\[|0\rangle - \text{H} \]
\[|1\rangle - \text{H} \]
\[\text{G} \]
\[\text{G} \]
\[\text{G} \]
\[\ldots \]

i.e. the diffusion operator

\[|x\rangle - \text{H} \]
\[2|0\rangle \langle 0| - I \]
\[|x\rangle \]
\[|0\rangle \]
\[|-\rangle \]
To estimate the cost of Grover’s algorithm...

\[|0\rangle \quad H \quad G \quad G \quad G \quad \ldots \]

\[|1\rangle \quad H \quad G \quad G \quad G \quad \ldots \]

and the oracle.

\[|x\rangle \quad H \quad 2 |0\rangle \langle 0| - I \quad H \quad |x\rangle \]

\[|0\rangle \quad O_f \quad |0\rangle \]

\[|-\rangle \quad |-\rangle \]

So you want to break a hash function...
To estimate the cost of Grover’s algorithm...

The oracle needs to be instantiated

\[O_f \rightarrow U_f \]
To estimate the cost of Grover’s algorithm...

The oracle needs to be instantiated

\[
\begin{align*}
|x\rangle & \quad U_H \quad X_y \quad X_y \quad U_H \\
|0\rangle & \quad |x'\rangle \\
|\text{--}\rangle & \quad |0\rangle \\
\end{align*}
\]

with a reversible implementation of H.

\[
\begin{align*}
|x\rangle & \quad U_H \\
|a\rangle & \quad |a \oplus H(x)\rangle
\end{align*}
\]
The logical layer

1. Compile to a universal gate set (Clifford+T)
2. Optimize the circuit (minimize T-count)
Our contribution:

1. T-count optimized reversible implementations of SHA-2 and SHA-3 functions.

<table>
<thead>
<tr>
<th></th>
<th>#gates</th>
<th>depth</th>
<th>#qubits</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>T</td>
<td>Clifford</td>
<td>T</td>
</tr>
<tr>
<td>SHA-256</td>
<td>228,992</td>
<td>4,281,968</td>
<td>70,400</td>
</tr>
<tr>
<td>SHAKE-256</td>
<td>499,200</td>
<td>34,030,165</td>
<td>576</td>
</tr>
</tbody>
</table>
The fault-tolerant layer

Without significant future effort, the classical processing will almost certainly limit the speed of any quantum computer, particularly one with intrinsically fast quantum gates.

The fault-tolerant layer

Our contribution:

2. Cost model for comparing Grover against classical brute force search.
The fault-tolerant layer

1. Assume surface code quantum computing.
2. Estimate additional resources required by fault tolerance layer, e.g. magic state distillation factories.
3. Cost only the classical resources.
4. Assume 1 classical core per logical qubit.
5. Assume 1 surface code cycle \(\approx \) 1 application of H.
6. Compute cost as surface code cycles \(\times \) logical qubits.
The fault-tolerant layer

See our forthcoming paper for details.

Thanks!