Circuit-extension handshakes for Tor
achieving forward secrecy in a quantum world

John M. Schanck1,2 William Whyte1 Zhenfei Zhang1

Security Innovation, Wilmington, MA 01887, USA

Institute for Quantum Computing, University of Waterloo, Waterloo N2H 3G1, Canada

July 20, 2016
Mechanical calculator, circa 1932

source: computerhistory.org
Quantum mechanical calculator, circa 2014

Quantum mechanical calculator, circa 2014

Quantum computers are a real threat

- Currently used public key crypto will be broken.
- We need to take steps now to mitigate risk.
- We should start deploying post-quantum cryptography.
 - Alongside currently used crypto.
Hybrid ciphersuites

Using ECDH now? Switch to ECDH+PostQuantumKEX

Why?
- Low confidence
 - in the security of new primitives and
 - in the reliability of new implementations.
- Regulations (FIPS-140, etc)
Hybrid ciphersuites

Using ECDH now? Switch to ECDH+PostQuantumKEX

Why?
▶ Low confidence
 ▶ in the security of new primitives and
 ▶ in the reliability of new implementations.
▶ Regulations (FIPS-140, etc)
Pre-quantum, transitional, and post-quantum security

Three notions of security for channel establishment protocols

- Secure in a pre-quantum setting
 \[\Leftrightarrow\] pre-quantum auth and pre-quantum confidentiality.

- Secure in a transitional setting
 \[\Leftrightarrow\] pre-quantum auth and post-quantum confidentiality.

- Secure in a post-quantum setting
 \[\Leftrightarrow\] post-quantum auth and post-quantum confidentiality.
Pre-quantum, transitional, and post-quantum security

Three notions of security for channel establishment protocols

- Secure in a pre-quantum setting
 \[\Leftrightarrow \text{pre-quantum auth and pre-quantum confidentiality.} \]

- Secure in a transitional setting
 \[\Leftrightarrow \text{pre-quantum auth and post-quantum confidentiality.} \]

- Secure in a post-quantum setting
 \[\Leftrightarrow \text{post-quantum auth and post-quantum confidentiality.} \]
Transitional security for Tor

Why?

▷ Full take of ciphertexts at an entry node leads to loss of anonymity and secrecy in the future.
▷ Tor users might be targetted by patient, well-funded, adversaries.

How?

▷ Add a post-quantum key encapsulation mechanism to the current circuit-extension handshake, ntor.
One-way authenticated key exchange
Published in 2013

Engineering specification Tor Proposal #216
Deployed since Tor 0.2.4.8-alpha
Anonymous client

\[(x, X) = \text{DHGen}(1^\lambda)\]

Server with long-term DH key \((a, A)\) and identity digest \(\hat{P}\)

\[(y, Y) = \text{DHGen}(1^\lambda)\]

\[\text{pms} = X^y || X^a\]

\[T_1 = \hat{P} || A || X || Y || \text{proto}_id\]

\[T_2 = \hat{P} || A || Y || X || \text{proto}_id || \text{Server}\]

\[vk = \text{HMAC}(t_verify, \text{pms} || T_1)\]

\[\text{auth} = \text{HMAC}(t_mac, vk || T_2)\]

\[\text{prk} = \text{HMAC}(t_key, \text{pms} || T_1)\]

\[K = \text{HMAC}^*(\text{prk}, \text{m_expand})\]
Anonymous client

\[(x, X) = \text{DHGen}(1^\lambda)\]

Server with long-term DH key \((a, A)\)
and identity digest \(\hat{P}\)

\[(y, Y) = \text{DHGen}(1^\lambda)\]

\[pms = X^y || X^a\]

\[T_1 = \hat{P} || A || X || Y || \text{proto_id} \]

\[T_2 = \hat{P} || A || Y || X || \text{proto_id} || \text{Server} \]

\[vk = \text{HMAC}(t_{\text{verify}}, pms || T_1)\]

\[\text{ensure } \text{auth} = \text{HMAC}(t_{\text{mac}}, vk || T_2)\]

\[\text{prk} = \text{HMAC}(t_{\text{key}}, pms || T_1)\]

\[K = \text{HMAC}^*(\text{prk}, \text{m_expand})\]
Anonymous client

\[(x, X) = \text{DHGen}(1^\lambda)\]

\[\Rightarrow X\]

\[(y, Y) = \text{DHGen}(1^\lambda)\]

\[pms = X^y || X^a\]

\[T_1 = \widehat{P} || A || X || Y || \text{proto}_\text{id}\]

\[T_2 = \widehat{P} || A || Y || X || \text{proto}_\text{id} || \text{Server}\]

\[vk = \text{HMAC}(t_{\text{verify}}, pms || T_1)\]

\[\text{ensure } auth = \text{HMAC}(t_{\text{mac}}, vk || T_2)\]

\[prk = \text{HMAC}(t_{\text{key}}, pms || T_1)\]

\[K = \text{HMAC}^*(prk, m_{\text{expand}})\]

Server with long-term DH key \((a, A)\) and identity digest \(\widehat{P}\)

\[\text{auth} \leftarrow Y, auth\]
Anonymous client

\[(x, X) = \text{DHGen}(1^\lambda)\]

\[X \rightarrow (y, Y) = \text{DHGen}(1^\lambda)\]

Server with long-term DH key \((a, A)\) and identity digest \(\hat{P}\)

\[pms = X^y || X^a\]

\[T_1 = \hat{P} || A || X || Y || \text{proto_id} \]

\[T_2 = \hat{P} || A || Y || X || \text{proto_id} || \text{Server} \]

\[vk = \text{HMAC(t_verify, pms || T_1)} \]

\[auth = \text{HMAC(t_mac, vk || T_2)} \]

\[\text{ensure } auth = \text{HMAC(t_mac, vk || T_2)}\]

\[prk = \text{HMAC(t_key, pms || T_1)} \]

\[K = \text{HMAC}^*(prk, m_expand) \]

\[Y, auth \leftarrow pms = Y^x || A^x\]

\[T_1 = \hat{P} || A || X || Y || \text{proto_id} \]

\[T_2 = \hat{P} || A || Y || X || \text{proto_id} || \text{Server} \]

\[vk = \text{HMAC(t_verify, pms || T_1)} \]

\[auth = \text{HMAC(t_mac, vk || T_2)} \]

\[prk = \text{HMAC(t_key, pms || T_1)} \]

\[K = \text{HMAC}^*(prk, m_expand) \]
Variant of ntor with a proof of security in the pre-quantum Authenticated and Confidential Channel Establishment model (pre-quantum ACCE).
Changes to pre-master secret

- ntor:
 \[pms = Y^x \parallel A^x \]

- hybrid-null:
 \[pms = H(A^x) \parallel Y^x \]
Changes to auth tag

- ntor:

\[T_1 = \hat{P} || A || X || Y || \text{proto}_id \]
\[T_2 = \hat{P} || A || Y || X || \text{proto}_id || \text{Server} \]
\[\text{vk} = \text{HMAC-SHA256}(\text{proto}_id: \text{verify}, pms || T_1) \]
\[\text{auth} = \text{HMAC-SHA256}(\text{proto}_id: \text{mac}, \text{vk} || T_2) \]

- hybrid-null:

\[T = \hat{P} || A || X || Y \]
\[\text{prk} = \text{HMAC-SHA256}(T, pms) \]
\[\text{auth} = \text{HMAC-SHA256}^*(\text{prk}, \text{proto}_id: \text{auth}) \]
Changes to key derivation

- **ntor:**

 \[
 prk = \text{HMAC-SHA256}(\text{proto_id:key_extract}, pms||T_1)
 \]

 \[
 K = \text{HMAC-SHA256}^*(prk, \text{proto_id:key_expand})
 \]

- **hybrid-null:**

 \[
 prk = \text{HMAC-SHA256}(T, pms)
 \]

 \[
 K = \text{HMAC-SHA256}^*(prk, \text{proto_id:key}).
 \]
Anonymous client

\[(x, X) = DHGen(1^\lambda)\]

Server with long-term DH key \((a, A)\) and identity digest \(\hat{P}\)

\[(y, Y) = DHGen(1^\lambda)\]

\[s_0 = H(X^a)\]
\[s_1 = X^y\]
\[pms = s_0 || s_1\]
\[T = \hat{P} || A || X || Y\]
\[prk = Xtr(T, pms)\]
\[auth = Prf^*(prk, t_{auth})\]

\[pms = H(A^x) || Y^x\]
\[T = \hat{P} || A || X || Y\]
\[prk = Xtr(T, pms)\]
\[auth = Prf^*(prk, t_{auth})\]
\[K = Prf^*(prk, t_{key})\]
Anonymous client

$$(x, X) = \text{DHGen}(1^\lambda)$$

Server with long-term DH key (a, A) and identity digest \hat{P}

$$(y, Y) = \text{DHGen}(1^\lambda)$$

$s_0 = H(X^a)$

$s_1 = X^y$

$pms = s_0 || s_1$

$T = \hat{P} || A || X || Y$

$prk = \text{Xtr}(T, pms)$

$auth = \text{Prf}^*(prk, t_{auth})$

$pms = H(A^x) || Y^x$

$T = \hat{P} || A || X || Y$

$prk = \text{Xtr}(T, pms)$

ensure $auth = \text{Prf}^*(prk, t_{auth})$

$K = \text{Prf}^*(prk, t_{key})$

$K = \text{Prf}^*(prk, t_{key})$
Anonymous client

\[(x, X) = \text{DHGen}(1^\lambda)\]
\[(esk, epk) = \text{KeyGen}(1^\lambda)\]

Server with long-term DH key \((a, A)\)
and identity digest \(\hat{P}\)

\[X, epk \rightarrow (y, Y) = \text{DHGen}(1^\lambda)\]
\[s_0 = H(X^x)\]
\[s_1 = X^y\]
\[s_2 \leftarrow \text{M}\]
\[ct = \text{Encaps}(s_2, epk)\]
\[pms = s_0||s_1||s_2\]
\[T = \hat{P}||A||X||Y||epk||ct\]
\[prk = \text{Xtr}(T, pms)\]
\[auth = \text{Prf}^*(prk, t_auth)\]

\[\downarrow Y, ct, auth\]
\[pms = H(A^x) || Y^x \ || \ \text{Decaps}(ct, esk)\]
\[T = \hat{P}||A||X||Y||epk||ct\]
\[prk = \text{Xtr}(T, pms)\]
\[\text{ensure auth = Prf}^*(prk, t_auth)\]
\[K = \text{Prf}^*(prk, t_key)\]
Performance

hybrid instantiated with ntru-ees443ep1.

<table>
<thead>
<tr>
<th></th>
<th>tap</th>
<th>ntor</th>
<th>hybrid</th>
<th>Ghosh-Kate</th>
</tr>
</thead>
<tbody>
<tr>
<td>bytes</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>client → server</td>
<td>186</td>
<td>84</td>
<td>693</td>
<td>1312</td>
</tr>
<tr>
<td>server → client</td>
<td>148</td>
<td>64</td>
<td>673</td>
<td>1376</td>
</tr>
<tr>
<td>computation</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>client init</td>
<td>258μs</td>
<td>84μs</td>
<td>661μs</td>
<td>150μs*</td>
</tr>
<tr>
<td>server response</td>
<td>682μs</td>
<td>263μs</td>
<td>306μs</td>
<td>150μs*</td>
</tr>
<tr>
<td>client finish</td>
<td>233μs</td>
<td>180μs</td>
<td>218μs</td>
<td>150μs*</td>
</tr>
<tr>
<td>total</td>
<td>1173μs</td>
<td>527μs</td>
<td>1185μs</td>
<td>450μs*</td>
</tr>
<tr>
<td>% client</td>
<td>42%</td>
<td>50%</td>
<td>74%</td>
<td>67%</td>
</tr>
</tbody>
</table>
Other considerations

1. Tor only allows 505 bytes in CREATE cells
2. Post-quantum keys and ciphertexts are huge

\[
\begin{array}{lcl}
\text{client} & \rightarrow & \text{server} \\
\text{server} & \rightarrow & \text{client}
\end{array}
\]

<table>
<thead>
<tr>
<th>Scheme</th>
<th>Client Size</th>
<th>Server Size</th>
</tr>
</thead>
<tbody>
<tr>
<td>SIDH $2^{372}3^{239} - 1$</td>
<td>564</td>
<td>564</td>
</tr>
<tr>
<td>NTRU EES443EP1</td>
<td>615</td>
<td>610</td>
</tr>
<tr>
<td>NTRU EES743EP1</td>
<td>1026</td>
<td>1021</td>
</tr>
<tr>
<td>RLWE NEWHOPE</td>
<td>1824</td>
<td>2048</td>
</tr>
</tbody>
</table>

3. Tor Proposal #249 would allow longer handshakes
Other considerations

1. Multi-ciphersuite security.
 ▶ OK to re-use \((a, A)\) between hybrid-null and hybrid-xyz?

2. One-way Anonymity

3. Post-quantum ACCE
 ▶ Active quantum attackers?

4. Symmetric crypto
 ▶ Cipher currently used by Tor doesn’t meet criteria for our proof of security
 ▶ Tor Proposals \#202, \#261 start to address this
Thanks!