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Overview

CRYSTALS is a suite of public key cryptographic algorithms.

Kyber is a general purpose key encapsulation mechanism (KEM).
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A (possible) look at 100 years of factoring machines

1931

Factors 60-bit numbers

in < 1 hour.

1981

Factors 160-bit numbers

in < 24 hours.

2031

Factors 2048-bit numbers

in < 30 hours.
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The cryptocalypse?!?

That depends.

• Factoring and discrete log are not fundamentally di�cult.

• Large quantum computers may be built soon.

Ask yourself:

• How are you using cryptography now?

• No real threat to symmetric crypto.

• How strong is your adversary?

• Willing to wait 10+ years?

• Willing to spend 30+ hours of compute, per key, on a $1bn+ machine?

And at least think about upgrade path.
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NIST standardization process

US National Institute of Standards and Technology put out a call for

• Key Encapsulation Mechanisms (KEMs),

• Public key encryption schemes,

• Digital signature schemes.

Timeline:

X� Nov. 2017: First round submission deadline.

X� Apr. 2018: First workshop.

� Late 2018/Early 2019: Second round candidate announcement.

� Aug. 2019: Second workshop.

� 2020/2021: Third round?

� 2022/2024: Draft standards.
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NIST standardization process

45 KEM submissions. 21 are �lattice based.�

Of these:

• 12 are built on same �chassis� as Kyber.

• Approximate key transport via noisy dot products.

• Syntactically similar to Lindner�Peikert 2011 (based on LWE [Regev, 2005]).

5



NIST standardization process

45 KEM submissions. 21 are �lattice based.�

Of these:

• 12 are built on same �chassis� as Kyber.

• Approximate key transport via noisy dot products.

• Syntactically similar to Lindner�Peikert 2011 (based on LWE [Regev, 2005]).

• 1 is syntactically similar to original LWE system.

• 3 are based on NTRU [Ho�stein�Pipher�Silverman, 1998].

• Remaining 5 are harder to classify.
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Assumption: One-wayness and/or indistinguishability of �noisy dot products�

Suppose

• a is a known vector of scalars chosen uniformly at random.

• s is a secret vector of scalars of known distribution.

• e is a secret scalar of known distribution.

Then, with appropriate restrictions on

1. the de�nition of �scalar� and

2. and distribution of s and e,

it is hard to distinguish the noisy dot product

aT · s+ e

from a uniform scalar. Even when same s is used with many a's and e's.
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Chassis: Approximate key transport using noisy dot products

45 KEMs. 21 based on lattices. Of these:

• 12 are built on same �chassis� as Kyber.

• Approximate key transport via noisy dot products.

• Syntactically similar to Lindner�Peikert 2011.

Alice contributes:

• A matrix A

• A column vector A · s+ e1.

Bob contributes:

• A row vector rT · A+ eT
2
.

• A scalar rT · (A · s+ e1) + e3.

Alice can compute:(
rT · (A · s+ e1) + e3

)
−
(
rT · A+ eT2

)
· s

= rT · e1 − eT2 · s+ e3
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Chassis: Approximate key transport using noisy dot products
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Chassis: Approximate key transport using noisy dot products

. . . Approximate key transport. . .

Alice contributes:

• A matrix A

• A column vector A · s+ e1.

Bob contributes:

• A row vector rT · A+ eT
2
.

• A scalar rT · (A · s+ e1) + e3 +m.

Alice can compute:(
rT · (A · s+ e1 +m) + e3

)
−
(
rT · A+ eT2

)
· s

= rT · e1 − eT2 · s+ e3︸ ︷︷ ︸
noise

+m.

⇒ Bob transmits one noisy scalar to Alice.
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Details

I've omitted several crucial details:

• the de�nition of �scalar� and the dimensions of A,

• distributions for s, e1, r, e2, e3,

• encoding of key material into m,

• how to go from approximate to exact key transport.

These are the attributes that distinguish the 12 syntactically similar KEM submissions.
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Scalars � the main innovation of Kyber

Most schemes go to one of two extremes.
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Scalars � the main innovation of Kyber

Most schemes go to one of two extremes.

FrodoKEM-640

�LWE�

• A is 640× 640.

• Scalars are Zq.

• Alice decodes 2 bits from each of

64 noisy scalars (from 8 parallel

exchanges). 128 total.

NewHope1024

�RLWE�

• A is 1× 1.

• Scalars are Z1024
q with

the multiplication of

Zq[x ]/(x
1024 + 1).

• Alice decodes 1 bit from each

Zq-coe�cient of the noisy scalar.

1024 total. 4−to−1 bit error

correction.
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Scalars � the main innovation of Kyber

Kyber strikes a balance.

Kyber768

�MLWE�

• A is 3× 3.

• Scalars are Z256
q with

the multiplication of

Zq[x ]/(x
256 + 1).

• Alice decodes 1 bit from each

Zq-coe�cient of the noisy scalar.

256 total.

• Dimension 768 is sweet spot for lattice security.

• 256-bit symmetric keys are standard.

• For Kyber512 and Kyber1024: change the size of A.
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Exact key transport

Sketch:

• m = bq/2cm′, where m′ is key to encapsulate.

• Ensure that the coe�cients of rT · e1 + eT
2
· s+ e3 have magnitude less than q/4.

• Recover m′ by �rounding� noisy scalar.
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Exact key transport

Sketch:

• m = bq/2cm′, where m′ is key to encapsulate.

• Ensure that the coe�cients of rT · e1 + eT
2
· s+ e3 have magnitude less than q/4.

• Recover m′ by �rounding� noisy scalar.

This is not guaranteed to succeed.

We �x distributions for s, e1, r, e2, and e3 so that it fails with negligible probability.
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CCA transform � slightly modi�ed Fujisaki-Okamoto

High level idea:

• Bob expands all the random bits he needs for encryption from a seed.

• He takes the seed to be a hash of Alice's public key and m.

• After decryption, Alice recovers the seed and checks that the ciphertext was

generated correctly.
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CCA transform � slightly modi�ed Fujisaki-Okamoto

High level idea:

• Bob expands all the random bits he needs for encryption from a seed.

• He takes the seed to be a hash of Alice's public key and m.

• After decryption, Alice recovers the seed and checks that the ciphertext was

generated correctly.

Including Alice's public key in seed is a defense against multi-target attacks.
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E�ciency enhancements

• Choose q to support a length 256 number theoretic transform (think: FFT).

Z256

q with Zq[x ]/(x
256 + 1) mult.

NTT←−→ Z256

q with coe�cient-wise mult.

• Sample entries of A in �NTT domain�.

• Expand A from a short seed.

• Compress Alice's vector, Bob's vector, and Bob's scalar.
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E�ciency enhancements

• Choose q to support a length 256 number theoretic transform (think: FFT).

Z256

q with Zq[x ]/(x
256 + 1) mult.

NTT←−→ Z256

q with coe�cient-wise mult.

• Sample entries of A in �NTT domain�.

• Expand A from a short seed.

• Compress Alice's vector, Bob's vector, and Bob's scalar.

• Careful! Not just an e�ciency tweak.

• Changes distribution of e1, e2 and e3.

• A�ects correctness and security proofs

(Thanks to Jan Pieter D'Anvers for pointing out an error in earlier version).
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Parameter sets and performance

Kyber512 Kyber768 Kyber1024

Size (in bytes)
pk: 736 1088 1440

ct: 800 1152 1504

Haswell Cycles (Ref)

gen: 141 872 243 004 368 564

enc: 205 468 332 616 481 042

dec: 246 040 394 424 558 740

Haswell Cycles (AVX2)

gen: 55 160 85 472 121 056

enc: 75 680 112 660 157 964

dec: 74 428 108 904 154 952

X25519: gen: 90668 cycles, enc/dec: 138963
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Security

Kyber512 Kyber768 Kyber1024

Best quantum attack cost 2103 2161 2221

Note: units of �cost� are � bit operations.
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Correctness

Kyber512 Kyber768 Kyber1024

Decryption failure probability 2−145 2−142 2−169
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Takeaway: think about your upgrade path

• How hard is it for you to �drop-in� new crypto?

• Is there anything you can do now to make that process easier?

• Can you tolerate ≈ 1kB public keys and ciphertexts.
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More info online

https://pq-crystals.org/kyber

Thanks!
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