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Factoring integers

n = pe1
1 pe2

2 ⋅ ⋅ ⋅ pek
k ,

Every integer n > 1 can be written uniquely as a product of prime powers

where p1 < p2 < . . . < pk are distinct primes and the ei are positive integers .

To factor n is to write n as above.
To split n is to find some integer d, 1 < d < n, that divides n.

Fundamental theorem of arithmetic:

Definitions:



How large of a number will we ever factor?

From Odlyzko, “Future of factoring.” 1995.

❖ 1874, Jevons conjectures nobody (but himself) would ever know the 
factors of 8,616,460,799.

❖ 1967, Brillhart and Selfridge: “nothing but frustration can be 
expected from an attack on a number of 25 or more digits”.

❖ 1976, Guy: “I shall be surprised if anyone regularly factors numbers 
of size 10^80 without special form in the present century.”

❖ 1977, Rivest: factoring 129 digit number would take “40 quadrillion 
years”.



1931: Lehmer’s photoelectric gear sieve

n = uv x = (u + v)/2 y = (u − v)/2

n = (x + y)(x − y) x2 − n = y2

• Pick t (small) integers, m1, m2, ..., mt.
• Make t tables. Table i contains 

quadratic residues r in Z/mi for 
which r+n is also a quadratic residue.

• Iterate over candidates C for x^2 - n.
• Check if C mod mi is in table i for all 

i=1...t.
• If C passes all t tests, try to factor n.

Fermat’s method



1931: Lehmer—Powers describe CFRAC 
1970: Morrison—Brillhart implement CFRAC

❖ 39 digit “F7” factored in 
September 1970 on an IBM 
360/91. Not reported until 
1975 Lehmer tribute issue of 
Math. Comp.

❖ “In those days, integer 
factorization was not 
fashionable” (Odlyzko 1995).

❖ 45 digit factorizations may 
have been possible.

F7 = 227 + 1 = 340,282,366,920,938,463,463,374,607,431,768,211,457



1977: Rivest—Shamir—Adleman Cryptosystem 

ℰn(m) := m3 mod n 𝒟n(c) := cd mod n

Public key : n = pq

Private key : d such that   3d ≡ 1 (mod φ(n))

φ(pq) = (p − 1)(q − 1)

Encryption Decryption

Notes:
• p and q should be primes of roughly equal size that are both congruent to 2 mod 3.
•              is Euler’s totient function.φ(n)

φ(n) = | (ℤ/n)* |



1981: Pomerance describes quadratic sieve 
1982: Davis—Holdridge—Simmons implement quadratic sieve

❖ Factors numbers of roughly 
twice the bitlength that CFRAC 
can handle.

❖ Easier to parallelize than 
CFRAC.

❖ 1983: Canfield—Erdos—
Pomerance give a lower bound 
on the number of “smooth” 
numbers in an interval [1,x]. 
Pomerance conjectures 
quadratic sieve has complexity

exp ( log n log log n) .



“The easiest question to ask concerning integer factoring and the hardest to 
answer, is; ‘How large a number is it computationally feasible to factor using 
a general purpose factoring routine?’”(Davis—Holdridge—Simmons, 1984)



How large of a number will we ever factor?

More recently:

❖ 2009, Kleinjung—Aoki—Franke—Lensta—Thomé—Bos—Gaudry
—Krupa—Montgomery—Osvik—Riele—Timofeev—
Zimmerman: Report factorization of 768 bit (232 digit) number. 
“preciously little doubt about the feasibility by the year 2020” of 
1024 bit factorization.

❖ 2015, NSA: 3072 bit (924 digit) numbers will be hard to factor in 
short term.

❖ 2017, Bernstein—Heninger—Lou—Valenta: 2^43 bit (i.e. terabyte) 
numbers will be hard to factor in long term.



1994: Shor describes quantum factoring algorithm 
(Yet to be implemented)

❖ Uses a randomized reduction 
to order finding.

❖ Randomly select 
❖ Compute order of a, i.e. least r 

such that 
❖ (For odd composite n more 

than half of the elements of  
(Z/n)* have even order.)

❖ Check 
❖ Splits n as long as r is even and 

gcd(ar/2 − 1,n)

a ∈ (Z /n)× .

ar ≡ 1 (mod n)

ar/2 ≢ − 1 (mod n)



Quantum computing









iℏ d
dt

|ψ(t)⟩ = H(t) |ψ(t)⟩

States evolve in time in accordance with the Schrödinger equation:

In principle, time evolution can generate any unitary transformation.

UU† = U†U = I



Quantum circuits



Circuit for Shor’s algorithm
Here n is the number that we want to split and 
This particular circuit finds the order of 3.

s = 2⌈log2(n)⌉ .











Theorem : Let α ∈ ℝ, and let  a
b

∈ ℚ with a and b coprime. If 

then  a
b
 appears as a convergent in the continued fraction expansion of α .

α −
a
b

<
1
b2

,

Shor shows that we are likely to obtain a  y for which 
there exists d such that y

2s
−

d
r

≤
1

2s+1
.

Hence the choice of s with 2s ≈ n2 .



Gate cost of Shor’s algorithm

❖ Gate count is dominated by modular exponentiation.

❖ If M(t) is the cost of t-bit multiplication then total gate 
count is

❖ Assuming fast multiplication and using                                
as Shor recommends, this is

O(sM(log n)) .

O(log2+ϵ n) .
s = 2⌈log n⌉



Post-quantum RSA

❖  

❖ primes of bit length

❖ and operations (key generation, encryption, and 
decryption) that all cost

n = p1p2 ⋅ ⋅ ⋅ pk,

Bernstein—Henninger—Lou—Valenta recently proposed a 
variant of RSA with:

(log log n)2+ϵ

(log n)(log log n)O(1) .
bit operations.



Post-quantum RSA

n = p1p2⋯p231

Example

pi is a 4096 bit prime for all i

“Our heterogeneous cluster was able to generate primes at a rate of 
750–1585 primes per core-hour. Generating all 2^31 primes took 
approximately 1,975,000 core-hours. In calendar time, prime 
generation completed in four months running on spare compute 
capacity of a 1,400-core cluster.”

“Each multiplication modulo n inside Shor’s algorithm then uses 
2^56 qubit operations, and overall Shor’s algorithm consumes an 
astonishing 2^100 qubit operations.”

Efficiency:

Security:



Can we reduce ‘s’ in Shor’s algorithm?

❖ pqRSA assumes M(2^43) = 2^56, and that the modular 
exponentiation step Shor’s algorithm requires s = 2^44 
multiplications. Only clear path to an improved attack is 
to reduce s.

❖ One strategy: replace 3 with an element of smaller 
expected order and take s to be the square of the 
expected order.

❖ I don’t see how to do it.



Multi-power post-quantum RSA

❖  

❖ primes of bit length

❖ and operations (key generation, encryption, and 
decryption) all still cost

n = pπ1
1 pπ2

2 ⋯pπk
k ,

An easier problem?

(log log n)2+ϵ

(log n)(log log n)O(1) .
bit operations (but fewer primes are needed).



Multi-power pqRSA

❖ Consider the order of 3n mod n

φ(n) = φ (pπ1
1 pπ2

2 ⋯pπk
k ) = ∏pπi−1

i (pi − 1)

3n = 3∏ pπi
i ≡ (3∏ pπi−1

i )
∏i pi

(mod n)

∏pi − 1 ≈ exp(k(log log n)2+ϵ)

Has order dividing 



Multi-power pqRSA

n = p2
1 p3

2 p5
3 p7

4⋯p225287
20044

Example (also with one terabyte n)

pi is a 4096 bit prime for all i

In Shor’s algorithm we can take s = 2 ⋅ 4096 ⋅ 20044 ≈ 227

Again assume M(2^43) = 2^56, then Shor’s algorithm costs 2^83 qubit operations.

But wait! The precomputation, computing 3^n mod n, costs 2^99 bit operations!

What is the most expensive part of this attack?



NIST post-quantum cryptography standardization effort

❖ Large effort to choose new cryptography (public key 
encryption, digital signatures, and key encapsulation 
mechanisms) to replace RSA and other systems 
vulnerable to quantum attack.

❖ Over 60 proposals, many sacrificing size/efficiency for 
security against quantum attacks.

❖ Better cost analysis of Shor’s algorithm will help us tune 
these other systems.



Thanks!



Quantum computing 
❖  1961: Landauer considers necessity of energy dissipation in computing processes. 

Physically irreversible operations necessarily dissipative.

❖ 1973: Bennett constructs logically reversible Turing machine. Does not propose a physically 
reversible process.

❖ 1982: Benioff gives a (non-dissipative) quantum Hamiltonian description of a Turing 
machine. Some physically unrealistic features.

❖ 1985: Feynman gives a (non-dissipative) quantum Hamiltonian description of an arbitrary 
reversible circuit.

❖ 1984: Zurek shows that Benioff and Feynman’s proposals can be made reliable using 
dissipative error correction.

❖ 1989: Deutsch proposes (dissipative) circuits with gates that generate the full unitary group.

❖ 1993: Yao introduces “gate count” as a measure of quantum circuit complexity


