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Factoring integers

Fundamental theorem of arithmetic:

Every integer n > 1 can be written uniquely as a product of prime powers

e .. € e
n o 1 2 g, T k
where p, < p, < ... < p, are distinct primes and the ¢, are positive integers.
Definitions:

To factor n is to write n as above.
To split n is to find some integer d, 1 < d < n, that divides n.



How large of a number will we ever factor?

From Odlyzko, “Future of factoring.” 1995.

« 1874, Jevons conjectures nobody (but himself) would ever know the
tactors of 8,616,460,799.

* 1967, Brillhart and Selfridge: “nothing but frustration can be
expected from an attack on a number of 25 or more digits”.

* 1976, Guy: “I shall be surprised if anyone regularly factors numbers
of size 1080 without special form in the present century.”

« 1977, Rivest: factoring 129 digit number would take “40 quadrillion
years”.



1931: Lehmer’s photoelectric gear sieve

Fermat’'s method

n=uy X =(u+tv)2 y=w—v)/2
n=x+y)x-—y) X“—n=y

* Pick t (small) integers, m1, m2, ..., mt.

 Make t tables. Table 1 contains
quadratic residues r in Z/mi for
which r+n is also a quadratic residue.

e Jterate over candidates C for x/2 - n.

e Check if C mod mi is in table i for all
=t

 If C passes all t tests, try to factor n.




193 1: Lehmer—Powers describe CFRAC
1970: Morrison—Brillhart implement CFRAC

e O dioil B7 factored in
September 1970 on an IBM
360/91. Not reported until
1975 Lehmer tribute issue of
Math. Comp.

* “In those days, integer
factorization was not
fashionable” (Odlyzko 1995).

* 45 digit factorizations may
have been possible.

F, =27 4+ 1 = 340,282,366,920,938,463,463,374,607,431,768,211,457



1977: Rivest—Shamir—Adleman Cryptosystem

Public key : n = pg
Private key : d suchthat 3d=1 (mod ¢(n))

Encryption Decryption
&, (m) := m> mod n D (c) = c? mod n

Notes:
* p and q should be primes of roughly equal size that are both congruent to 2 mod 3.
@(n) is Euler’s totient function.

pn) = [(Z/n)*] gipgr—1(p - lig- |



+ 1983: Canfield—Erd6s—

198 1: Pomerance describes quadratic sieve
19382: Davis—Holdridge—Simmons implement quadratic sieve

* Factors numbers of roughly
twice the bitlength that CFRAC
can handle.

* Hasier to parallelize than
CFRAC.

Pomerance give a lower bound
on the number of “smooth”
numbers in an interval [1,x].

Pomerance conjectures
quadratic sieve has complexity

exp <\/log nloglogn ) :




“The easiest question to ask concerning integer factoring and the hardest to
answer, is; ‘How large a number is it computationally feasible to factor using
a general purpose factoring routine?’”(Davis—Holdridge—Simmons, 1984)
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How large of a number will we ever factor?

More recently:

« 2009, Kleinjung—Aoki—Franke—Lensta—Thomé—Bos—Gaudry
—Krupa—Montgomery—Osvik—Riele—Timofeev—
Zimmerman: Report factorization of 768 bit (232 digit) number.
“preciously little doubt about the feasibility by the year 2020” of
1024 bit tactorization.

# 2015, NSA: 3072 bit (924 digit) numbers will be hard to factor in
short term.

+ 2017, Bernstein—Heninger—Lou—Valenta: 243 bit (i.e. terabyte)
numbers will be hard to factor in long term.



1994: Shor describes quantum factoring algorithm
(Yet to be implemented)

Uses a randomized reduction
to order finding.

Randomly select a € (Z/n)*.

Compute order of a, i.e. least r
such that a"=1 (mod n)

(For odd composite n more
than half of the elements of
(Z/n)* have even order.)

Check ged(a” — 1,n)

Splitsnaslong asrisevenand = @il | ///{/,//////////////

a”?# —1 (mod n) it




(Quantum computing
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States evolve in time in accordance with the Schrédinger equation:

ih- [y (1) = H(t) | y(0))

Hhe  Hamil onion

In principle, time evolution can generate any unitary transformation.

Ul =1 = |




(Juantum circuits

Seguenticl composition vy —u - U

B |V, Y U, 1%




Circuit for Shor’s algorithm

Here n is the number that we want to split and s = 2[log,(n)] .
This particular circuit finds the order of 3.
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Theorem : Let a € R, and let % € Q with a and b coprime. If

i
<:E;2,

a
o e

b

then % appears as a convergent in the continued fraction expansion of « .

Hence the choice of s with 2% ~ n2.




Gate cost of Shor’s algorithm

* (Gate count is dominated by modular exponentiation.

« If M(t) is the cost of t-bit multiplication then total gate
count is O(sM(log n)) .

# Assuming fast multiplication and using s = 2[logn]
as Shor recommends, this is O(log?*¢ n) .




Post-quantum RSA

Bernstein—Henninger—Lou—Valenta recently proposed a
variant of RSA with:

* BW=D1Dy* " * Pp
+ primes of bit length (loglogn)**

* and operations (key generation, encryption, and
decryption) that all cost

(log n)(log log n)°M .
bit operations.



Post-quantum RSA

Example

i = Uil b

p; 1s a 4096 bit prime for all i
Efficiency:
“Our heterogeneous cluster was able to generate primes at a rate of
7501585 primes per core-hour. Generating all 231 primes took
approximately 1,975,000 core-hours. In calendar time, prime
generation completed in four months running on spare compute

capacity of a 1,400-core cluster.”

Security:
“Each multiplication modulo n inside Shor’s algorithm then uses
27N\56 qubit operations, and overall Shor’s algorithm consumes an

astonishing 2100 qubit operations.”



Can we reduce “s’ in Shor’s algorithm?

* pgRSA assumes M(2/43) = 256, and that the modular
exponentiation step Shor’s algorithm requires s = 244
multiplications. Only clear path to an improved attack is
to reduce s.

“ One strategy: replace 3 with an element of smaller
expected order and take s to be the square of the
expected order.

+ T don’t see how to do it.



Mula-power post-quantum RSA

An easier problem?

s = plipo...nk
» N pl p2 pk ’
+ primes of bit length (loglogn)**

* and operations (key generation, encryption, and
decryption) all still cost

(log n)(log log n)°M .
bit operations (but fewer primes are needed).



Mula-power pgRSA

+ Consider the order of 3" mod n

p(n) = @ (pflpfz---p,f") = pri_l(p,- = 1)

.7
3n = 311pf = <3HP ) Sed

o

Has order dividing
H p; — 1 = exp(k(log log n)**°)



Mula-power pgRSA

Example (also with one terabyte n)

. 1 5 9. 5oa
L=l L0

p; 1s a 4096 bit prime for all i

In Shor’s algorithm we can take § = 2 - 4096 - 20044 ~ 22’

Again assume M(2/43) = 256, then Shor’s algorithm costs 283 qubit operations.

But wait! The precomputation, computing 3 n mod n, costs 2299 bit operations!

What is the most expensive part of this attack?



NIST post-quantum cryptography standardization effort

« Large effort to choose new cryptography (public key

encryption, digital signatures, and key encapsulation
mechanisms) to replace RSA and other systems
vulnerable to quantum attack.

« QOver 60 proposals, many sacrificing size/ efficiency for
security against quantum attacks.

* Better cost analysis of Shor’s algorithm will help us tune
these other systems.






(Quantum computing

1961: Landauer considers necessity of energy dissipation in computing processes.
Physically irreversible operations necessarily dissipative.

+ 1973: Bennett constructs logically reversible Turing machine. Does not propose a physically
reversible process.

* 1982: Benioff gives a (non-dissipative) quantum Hamiltonian description of a Turing
machine. Some physically unrealistic features.

+ 1985: Feynman gives a (non-dissipative) quantum Hamiltonian description of an arbitrary
reversible circuit.

# 1984: Zurek shows that Benioff and Feynman’s proposals can be made reliable using
dissipative error correction.

+ 1989: Deutsch proposes (dissipative) circuits with gates that generate the full unitary group.

» 1993: Yao introduces “gate count” as a measure of quantum circuit complexity



