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This talk:
The heuristic cost—classical and quantum—of near neighbor search on spheres in
dimension < 1000.



Cost estimates and numerically optimized parameters for the heuristic NNS
algorithms underlying:

I Nguyen–Vidick sieve

I bgj1, i.e. Becker–Gama–Joux sieve w/o recursion

I The Becker–Ducas–Gama–Laarhoven sieve









Near neighbor search

A near neighbor search algorithm takes a list of N points, pre-processes it to
make neighbor queries more efficient.

I want to find points that are close to u in angular distance.

I Angular distance: θ(u, v) = arccos〈u, v〉.
I want to do this for many different u.
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List-size preserving parameterization

Special case:

I Input consists of N uniformly random points.

I N large enough to ensure that there are N neighboring pairs.

Write Cd(θ) for the spherical measure of

Cap(u, θ) = {v : θ(u, v) ≤ θ}.

Then

N ≈
(
N
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Algorithm: AllPairs / Nguyen–Vidick sieve

Input: list L of size N .

Search:
1. Number the points v1, v2, v3, . . . , vN

2. Test θ(vi, vj) ≤ θ for 1 ≤ i < j ≤ N



Cost of AllPairs / Nguyen–Vidick sieve
List-size preserving case

Classical search
Nguyen–Vidick (2008): (1/Cd(θ))

2+o(1)

(1/Cd(π/3))
2+o(1) = 2c(d) where c(d) = (0.4150 . . .+ o(1))d

Quantum search
Laarhoven–Mosca–van de Pol (2014): (1/Cd(θ))

1.5+o(1)

(1/Cd(π/3))
1.5+o(1) = 2c(d) where c(d) = (0.3112 . . .+ o(1))d
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List-size preserving case
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Quantum search
Laarhoven–Mosca–van de Pol (2014): (1/Cd(θ))
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Why care about the polynomial terms?

I Quantum and classical variants have different polynomial factors.

I Quantum advantage is small. Even smaller in more advanced algorithms.

I Polynomial factors are significant in low dimension.
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I Volume estimates.

I Cost of testing θ(u, v).
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Search predicates

I Search predicate on X :

f : X → {0, 1}

I Kernel of f :
Ker(f) = {x : f(x) = 0}

|f | = |Ker(f)|
I Predicate f ∩ g defined by:

Ker(f ∩ g) = Ker(f) ∩Ker(g)
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Filtered search

1 1 1 1 1 . . . 0
g(1) g(2) g(3) g(4) g(5) . . . 0



Quantum search

For any predicate g and unitary A, define the amplification operator:

G(A, g) := AR0A
†Rg

where

R0 |x〉 =

{
− |x〉 if x = 0

|x〉 otherwise

Rg |x〉 = (−1)g(x) |x〉 .



Quantum search

Suppose that measuring A |0〉 yields an element of Ker(g) with probability p.

Grover–Brassard–Høyer–Mosca–Tapp:

I Measuring
G(A, g)kA |0〉

with k ≈
√

1/p yields a root of g w.p. ≈ 1. . .

Boyer–Brassard–Høyer–Tapp:

I . . . even if p is not known.
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Filtered quantum search

Parameters m1 and m2.

1. Sample j uniformly from {0, . . . ,m1 − 1}
2. Sample k uniformly from {0, . . . ,m2 − 1}
3. Define

Aj = G(D, f)jD

Bk = G(Aj, f ∩ g)k

4. Prepare and measure the state:

BkAj |0〉



Cost of filtered quantum search

Suppose that we know P/γ ≤ |g| ≤ γP .

Proposition

We can choose m1 and m2 such that FilteredQuantumSearch finds a root of
f ∩ g with probability at least 1/8 and has a cost that is dominated by
(approximately)

I γ 1
2

√
N times the cost of G(g), or

I 4
3

√
γP times the cost of Rf∩g.
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Cost of filtered quantum search

Suppose that we know P/γ ≤ |g| ≤ γP .

Idealized Proposition

We can choose m1 and m2 such that FilteredQuantumSearch finds a root of
f ∩ g and has a cost that is dominated by

I 1
2

√
N times the cost of G(g), or

I 4
3

√
P times the cost of Rf∩g.



Algorithm: AllPairs / Nguyen–Vidick sieve

Input: list L of size N

1. Number the points v1, v2, v3, . . . , vN

2. For i = 1, . . . , N

3. For j = i+ 1, . . . , N

4. Test gi(vj) where gi(vj) = [θ(vi, vj) > π/3].
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Algorithm: AllPairs / Nguyen–Vidick sieve

Input: list L of size N

1. Number the points v1, v2, v3, . . . , vN

2. For i = 1, . . . , N

3. For j = i+ 1, . . . , N

4. If fi(vj) then test gi(vj) where gi(vj) = [θ(vi, vj) > π/3].

What to use for fi in a filtered search?



XOR + population count

Define a hash function family:

H = {u 7→ sgn(〈r, u〉) : r ∈ S}



XOR + population count

Fact: Pr
h←H

[h(u) 6= h(v)] =
θ(u, v)

π
.

Let Hn(x) = (h1(x), . . . hn(x)) for random hi ∈ H.

For large n, we have

HammingWeight(Hn(u)⊕Hn(v))

n
≈ θ(u, v)

π
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XOR + population count

Used as a filter in implementations of sieving algorithms:

I 2014 Fitzpatrick–Bischof–Buchmann–Dagdelen–Göpfert–Mariano–Yang

I 2018 Ducas

I 2019 Albrecht–Ducas–Herold–Kirshanova–Postlethwaite–Stevens

Earlier algorithmic use

I 1995 Goemans–Williamson

I 2002 Charikar



Algorithm: AllPairs / Nguyen–Vidick sieve

Input: list L of size N

Setup:
1. Fix Hn

2. Construct a table
(i,Hn(vi))

Search:
For all i:

1. Load Hn(vi)

2. For j = i+ 1, . . . , N

3. Load Hn(vj)

4. If HammingWt(Hn(vi)⊕Hn(vj)) ≤ k

5. Test θ(vi, vj) ≤ θ.



This work: New python/mpmath package

Calculates the circuit depth, width, gate count (etc.) for popcount and filtered
quantum search subroutines.

Calculates the accuracy of random popcount filters given

I points uniformly distributed on sphere;

I points uniformly distributed in a cap of angle β.

Calculates the (normalized) spherical measure of

I caps, using 2F1 representation of Cd(θ)

I intersections of caps, using an integral representation.
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Error correction

Image: Fowler, Mariantoni, Martinis, Cleland. (2012)



Error correction

We consider the added cost of reading syndromes, but not processing them.

(Under the same physical assumptions as Gidney–Ekera (2019))
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Algorithm: RandomBucketSearch / bgj1

Parameters: t, θ1

Input: list L of size N

Search:
1. Repeat t times:

2. Pick a random point f .

3. Run AllPairs on
Lf = L ∩ Cap(f, θ1).

Note: Optimal choice of t and θ1 is based on volume of the intersection of caps
of angle θ1 with centers at distance π/3.



Cost of RandomBucketSearch
List-size preserving case

Classical search
Albrecht–Ducas–Herold–Kirshanova–Postlethwaite–Stevens

2c(d) where c(d) = (0.3494 . . .+ o(1))d

Quantum search

2c(d) where c(d) = (0.3013 . . .+ o(1))d
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Algorithm: ListDecodingSearch / BDGL

Parameters: t, θ1, θ2

Input: list L of size N

Setup:
Pick a set of t random points F
Initialize t buckets {Lf : f ∈ F}

Fill:
1. For each v in L

2. insert v into Lf if
f ∈ Cap(v, θ2)

Query:
1. For each v in L

2. Fi = F ∩ Cap(v, θ1)
3. Run AllPairs on
LF =

∐
{Lf : f ∈ Fi}.



Cost of ListDecodingSearch / BDGL

Classical search
Becker–Ducas–Gama–Laarhoven:

2c(d) where c(d) = (0.2924 . . .+ o(1))d

Quantum search
Laarhoven:

2c(d) where c(d) = (0.2652 . . .+ o(1))d
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Barriers to a quantum speedup

qRAM

I Known constructions have some cost that grows like NO(1).

I qRAM computations are not necessarily “localizable”.



Barriers to a quantum speedup

Error correction overhead

I Cost of processing syndromes

I Cost of state distillation

I Locality constraints introduced by code

I Probability of failure from logical errors



Barriers to a quantum speedup

Poor parallelization
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Barriers to a quantum speedup

Cost underestimates

I “Idealized proposition”:
P/γ ≤ |g| ≤ γP ; Pr[success] ≥ 1/8.

I Use of G(H, f).
“Run AllPairs on LF =

∐
{Bf : f ∈ Fi}.”
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