Quantum speedups for lattice sieves are tenuous at best
ePrint: 2019/1161

Martin R. Albrecht, Vlad Gheorghiu,
Eamonn W. Postlethwaite, John M. Schanck

October 18, 2019

The security of Kyber768.

Not this talk:
The security of Kyber768.

Not this talk:
The security of Kyber768.
The lattice security of Kyber768.

Not this talk:
The security of Kyber768.

The lattice security of Kyber768.
The cost of BKZ-k for k that determines the lattice security of Kyber768.

Not this talk:
The security of Kyber768.

The lattice security of Kyber768.
The cost of BKZ-k for k that determines the lattice security of Kyber768.

The core-SVP estimate for the lattice security of Kyber768.

Not this talk:

The security of Kyber768.

The lattice security of Kyber768.

The cost of BKZ-k for k that determines the lattice security of Kyber768.

The core-SVP estimate for the lattice security of Kyber768.
The cost of the sieving routine inside the SVP solver used in the core-SVP estimate

for the lattice security of Kyber768.

Not this talk:

The security of Kyber768.

The lattice security of Kyber768.

The cost of BKZ-k for k that determines the lattice security of Kyber768.

The core-SVP estimate for the lattice security of Kyber768.

The cost of the sieving routine inside the SVP solver used in the core-SVP estimate
for the lattice security of Kyber768.

The heuristic cost of the sieving routine inside the SVP solver used in the core-SVP
estimate for the lattice security of Kyber768.

Not this talk:

The security of Kyber768.

The lattice security of Kyber768.

The cost of BKZ-k for k that determines the lattice security of Kyber768.

The core-SVP estimate for the lattice security of Kyber768.

The cost of the sieving routine inside the SVP solver used in the core-SVP estimate
for the lattice security of Kyber768.

The heuristic cost of the sieving routine inside the SVP solver used in the core-SVP
estimate for the lattice security of Kyber768.

The heuristic cost of one call to the sieving routine inside the SVP solver used in
the core-SVP estimate for the lattice security of Kyber768.

Not this talk:

The security of Kyber768.

The lattice security of Kyber768.

The cost of BKZ-k for k that determines the lattice security of Kyber768.

The core-SVP estimate for the lattice security of Kyber768.

The cost of the sieving routine inside the SVP solver used in the core-SVP estimate
for the lattice security of Kyber768.

The heuristic cost of the sieving routine inside the SVP solver used in the core-SVP
estimate for the lattice security of Kyber768.

The heuristic cost of one call to the sieving routine inside the SVP solver used in
the core-SVP estimate for the lattice security of Kyber768.

This talk:

The heuristic cost—classical and quantum—of near neighbor search on spheres in
dimension < 1000.

Cost estimates and numerically optimized parameters for the heuristic NNS
algorithms underlying:

» Nguyen-Vidick sieve
» bgjl, i.e. Becker—Gama—Joux sieve w/o recursion
» The Becker—-Ducas—Gama—Laarhoven sieve

Near neighbor search

A near neighbor search algorithm takes a list of N points, pre-processes it to
make neighbor queries more efficient.

Near neighbor search

A near neighbor search algorithm takes a list of N points, pre-processes it to
make neighbor queries more efficient.

| want to find points that are close to u in angular distance.
» Angular distance: 6(u,v) = arccos(u, v).
| want to do this for many different w.

List-size preserving parameterization

Special case:
» Input consists of NV uniformly random points.

> N large enough to ensure that there are IV neighboring pairs.

List-size preserving parameterization

Special case:
» Input consists of NV uniformly random points.

> N large enough to ensure that there are N neighboring pairs.

Write Cy(0) for the spherical measure of

Cap(u, 0) = {v: 0(u,v) < 6}.

N (;V)cd«n,

N =~ 2/Cd(9)

Then

equiv.

Algorithm: AllPairs / Nguyen—Vidick sieve

Input: list L of size N.

Search:
1. Number the points vy, v9,v3,..., 0N
2. Test O(v;,vj) <@ for1 <i<j<N

Cost of AllPairs / Nguyen—Vidick sieve

List-size preserving case
Classical search

Nguyen—Vidick (2008): (1/Cd(0))2+0(1)

Quantum search
Laarhoven—Mosca—van de Pol (2014): (1/Cy(#))5+e()

Cost of AllPairs / Nguyen—Vidick sieve

List-size preserving case

Classical search
Nguyen—Vidick (2008): (1/Cd(0))2+0(1)

(1/Cy(m/3))2+oW) = 2¢@) where ¢(d) = (0.4150. .. + o(1))d
Quantum search
Laarhoven—Mosca—van de Pol (2014): (1/Cy(#))5+e()

(1/Cy(m/3)) o+ = 2¢d) \where ¢(d) = (0.3112... + o(1))d

logy (#o0ps)

384

320

256 |-

192 |-

128 |

64

------- 0.4150d
e 0.3112d

| | |
100 200 300

|
400

|
500

|
600

|
700

|
800

|
900 1,000 d

Why care about the polynomial terms?

Why care about the polynomial terms?

» Quantum and classical variants have different polynomial factors.

Why care about the polynomial terms?

» Quantum and classical variants have different polynomial factors.
» Quantum advantage is small. Even smaller in more advanced algorithms.

Why care about the polynomial terms?

» Quantum and classical variants have different polynomial factors.
» Quantum advantage is small. Even smaller in more advanced algorithms.
» Polynomial factors are significant in low dimension.

What are the polynomial factors?

> Volume estimates.
» Cost of testing 0(u,v).

What are the polynomial factors?

» Cost of testing 0(u,v).

Search predicates

» Search predicate on X:
f: X —={0,1}

» Kernel of f:

Ker(f) ={z: f(z) = 0}

] = | Ker(f)]
» Predicate f N g defined by:

Ker(f N g) = Ker(f) N Ker(g)

Exhaustive search

g(l) g2 e g4 gb5)

Exhaustive search

1 g(2) s(3) s(4) g5

Exhaustive search

1 1 g3) s(4) &)

Exhaustive search

1 1 1 g4) g5

Exhaustive search

1 1 1 1 g(5)

Exhaustive search

Exhaustive search

g(57)

Exhaustive search

Filtered search

f(4)
g(4)

f(5)
g(5)

Filtered search

f(3)
g(3)

f(4)
g(4)

f(5)
g(5)

Filtered search

1
g(4)

f(5)
g(5)

Filtered search

1
g(4)

1
g(5)

Filtered search

1 1 1 1 1 0
g(l) g2 a3 g4 sb) ... g(57)

Filtered search

1 1 1 1 1
g(1) g2 e g4 gb)

Quantum search

For any predicate g and unitary A, define the amplification operator:
G(A,g) ;= AR(A'R,

where

|z) otherwise

R0|$>:{—|x> ifx =0

R, [z) = (-1)" |z).

Quantum search

Suppose that measuring A |0) yields an element of Ker(g) with probability p.

Quantum search

Suppose that measuring A |0) yields an element of Ker(g) with probability p.

Grover—Brassard—Hgyer—Mosca—Tapp:

» Measuring
G(A, g)" A |0)

with k = y/1/p yields a root of g w.p. ~ 1...

Quantum search

Suppose that measuring A |0) yields an element of Ker(g) with probability p.

Grover—Brassard—Hgyer—Mosca—Tapp:

» Measuring
G(A, g)" A |0)

with k = y/1/p yields a root of g w.p. ~ 1...

Boyer—Brassard—Hgyer—Tapp:
» ...even if pis not known.

Filtered quantum search

Parameters m; and ms.
1. Sample j uniformly from {0,...,m; — 1}
2. Sample k uniformly from {0,...,my — 1}
3. Define
A;=G(D, f)D
B = G(A;, fNg)*

4. Prepare and measure the state:

BiA;[0)

Cost of filtered quantum search

Suppose that we know P/y < |g| < vP.

Cost of filtered quantum search

Suppose that we know P/y < |g| < vP.

Proposition

We can choose my and mo such that FilteredQuantumSearch finds a root of
f N g with probability at least 1/8 and has a cost that is dominated by
(approximately)

> y3V'N times the cost of G(g), or
> 2+/7P times the cost of Rng.

Cost of filtered quantum search

Suppose that we know P/y < |g| < vP.

Proposition

We can choose my and mo such that FilteredQuantumSearch finds a root of
f N g with probability at least 1/8 and has a cost that is dominated by
(approximately)

> ~v1\/N times the cost of G(g), or

2
> §\/7P times the cost of Ryn,.

Cost of filtered quantum search

Suppose that we know P/y < |g| < vP.

Idealized Proposition

We can choose my and ms such that FilteredQuantumSearch finds a root of
f N g and has a cost that is dominated by

> %\/N times the cost of G(g), or
> %x/ﬁ times the cost of Ryn,.

Algorithm: AllPairs / Nguyen—Vidick sieve

Input: list L of size N
1. Number the points vy, v9,v3, ..., 0N
2. Fori=1,...,N
3. Forj=i+1,...,N
4. Test g;(v;) where g;(v;) = [0(v;,v;) > 7/3].

Algorithm: AllPairs / Nguyen—Vidick sieve

Input: list L of size N
1. Number the points vy, v9,v3, ..., 0N
2. Fori=1,...,N
3. Forj=i+1,...,N
4. If fi(v;) then test g;(v;) where g;(v;) = [0(v;,v;) > 7/3].

Algorithm: AllPairs / Nguyen—Vidick sieve

Input: list L of size N
1. Number the points v, vo, U3, ..., VN
2. Fori=1,...,N
3. Forj=i¢4+1,...,N
4. If fi(v;) then test g;(v;) where g;(v;) = [0(v;,v;) > 7/3].

What to use for f; in a filtered search?

XOR + population count

Define a hash function family:

H={ursgn({r,u)) : r €S}

XOR + population count

Fact: hzgd[h(u) # h(v)] =

XOR + population count
0(u,v)

Fact: hEr;d[h(u) # h(v)] =

Let H,(z) = (hi(x), ... hy(x)) for random h; € H.

XOR + population count

. _ 0(u,v)
Fact: hzr;d[h(u) # h(v)] = :

Let H,(z) = (hi(x), ... hy(x)) for random h; € H.

For large n, we have

HammingWeight(H,,(u) ® H,(v)) _ 0(u,v)

~

n ™

XOR + population count

Used as a filter in implementations of sieving algorithms:
» 2014 Fitzpatrick—Bischof-Buchmann—-Dagdelen—Gopfert-Mariano—Yang
» 2018 Ducas
» 2019 Albrecht-Ducas—Herold—Kirshanova—Postlethwaite—Stevens

Earlier algorithmic use
» 1995 Goemans—Williamson
» 2002 Charikar

Algorithm: AllPairs / Nguyen—Vidick sieve

Input: list L of size N Search:
For all 2:
Setup: 1. Load H,(v;)
1. Fix H, 2. Forj=i+1,....N
2. Construct a table 3. Load Hy(vy)
(i, Hy(v;)) 4. If HammingWt(H,(v;) ® Hy(vj)) <k
5 Test 0(v;,v;) < 0.

This work: New python/mpmath package

Calculates the circuit depth, width, gate count (etc.) for popcount and filtered
quantum search subroutines.

Calculates the accuracy of random popcount filters given
» points uniformly distributed on sphere;
» points uniformly distributed in a cap of angle .

Calculates the (normalized) spherical measure of
» caps, using oF} representation of Cy(6)
» intersections of caps, using an integral representation.

logy (#0ps)

3841 ... 0.4150d :

320 [... 03112d “““‘.""' 7
256 | T

0 L | | | | | | | | | |
100 200 300 400 500 600 700 800 900 1,000 d

logy (#0ps)

448

T
—=— AllPair (c: RAM)

-2 0.4150d -
3841 AlPair (a: depth-width) el
3201 0.3112d '
256 |-
192
198 e
64 |yt
0 L | | | | | | | |
100 200 300 400 500 600 700 800

|
900 1,000 d

Error correction

Image: Fowler, Mariantoni, Martinis, Cleland. (2012)

Error correction

We consider the added cost of reading syndromes, but not processing them.

(Under the same physical assumptions as Gidney—Ekera (2019))

logy (#0ps)

448
384

320

256 |
192 |-

128 |-

T T T T
I —=— AllPair (c: RAM)
------ 0.4150d
—— AllPair (q: GE19)
------ 0.3112d

.....

ot

| | | |
100 200 300 400

|
500

|
600

|
700

|
800

|
900 1,000 d

Algorithm: RandomBucketSearch / bgj1

Parameters: ¢, 6, Search:

Inout: list I of size N 1. Repeat t times:
PHE- ISt & of size 2. Pick a random point f.

3. Run AllPairs on

Note: Optimal choice of ¢ and 6, is based on volume of the intersection of caps
of angle 6, with centers at distance 7/3.

Cost of RandomBucketSearch
List-size preserving case

Classical search
Albrecht—Ducas—Herold—Kirshanova—Postlethwaite—Stevens

24 where ¢(d) = (0.3494.... 4 o(1))d

Quantum search

24 where ¢(d) = (0.3013... 4 o(1))d

logy (#0ps)

T T
------- 0.3494d
320 oo 0.3013d

256 |

192 |-

0L \ \ \ \ \ \ \ \ \
100 200 300 400 500 600 700 800 900 1,000 d

logy (#0ps)

384

320

256 |-

192 |-

128 |

- —— RandomBucket (c: RAM)

------ 0.3494d

------ 0.3013d

o

.

Lot

- —— RandomBucket (q: depth-width)

| | | | |
100 200 300 400 500

|
600

|
700

|
800

|
900 1,000 d

logy (#0ps)

T
: RAM)

384 - —— RandomBucket (c

------ 0.3494d
320 - —— RandomBucket (q: GE19)

------ 0.3013d
256 |- -
192 | :
18 el :
641 i]

0 L | | | | | | | | i
100 200 300 400 500 600 700 800

|
900 1,000 d

Algorithm: ListDecodingSearch / BDGL

Parameters: ¢, 6, 6, Fill:

)) 1. Foreachvin L
Input: list L of size N

2. insert v into Ly if
Setup: f € Cap(v,6:)
Pick a set of ¢t random points F
Initialize ¢ buckets {L;: f € I'} Query:

1. Foreach v in L

2. F,=FnCap(v,by)

3. Run AllPairs on
Lp=1[{Ls: f € F}.

Cost of ListDecodingSearch / BDGL

Classical search
Becker—Ducas—Gama-Laarhoven:

29 where ¢(d) = (0.2924 . ..

Quantum search
Laarhoven:

29 where ¢(d) = (0.2652. ..

T
------- 0.2924d
256 0.2652 d
» 192 |
S
*
s0 128
=2
64 |
0l

| | ‘
100 200 300

|
400

|
500

|
600

| | ‘
700 800 900 1,000 d

logy (#0ps)

320

256 |-

T T
| —=— ListDecoding (c: RAM)
------ 0.2924d
—— ListDecoding (q: depth-width)
------ 0.2652d

ot

.....

‘‘‘‘
....

l“‘-‘

.t
....
Lot .

.
.t
. .
. .
.

.t
Po

| | | | | |
100 200 300 400 500 600

| |
700 800

|
900 1,000 d

logy (#0ps)

320

256 |-

et

T T T T
—=— ListDecoding (c: RAM)
------ 0.2924d
—— ListDecoding (q: GE19)

------ 0.2652d

.....

et

|
10

| | | |
0 200 300 400 500

|
600

|
700

|
800

|
900 1,000 d

Barriers to a quantum speedup

qRAM

» Known constructions have some cost that grows like N,
» gRAM computations are not necessarily “localizable”.

Barriers to a quantum speedup

Error correction overhead

» Cost of processing syndromes

» Cost of state distillation

» Locality constraints introduced by code
» Probability of failure from logical errors

Barriers to a quantum speedup

Poor parallelization

logy (#0ps)

96 |

—=— ListDecoding (q: depth per search)

| | | | | | | |
100 200 300 400 500 600 700 800

|
900 1,000 d

Barriers to a quantum speedup

Cost underestimates

» “ldealized proposition”:
P/vy <|g| <~P; Pr[success] > 1/8.

» Use of G(H, f).
“Run AllPairs on Lp =[[{By : f € F;}."

logy (#ops)

256

192

| | | |
300 350 400 450 500 550 600 650 700 750 800 d

