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This talk:

The heuristic cost—classical and quantum—of near neighbor search on spheres in
dimension < 1000.



Cost estimates and numerically optimized parameters for the heuristic NNS
algorithms underlying:

» Nguyen-Vidick sieve
» bgjl, i.e. Becker—Gama—Joux sieve w/o recursion
» The Becker—-Ducas—Gama—Laarhoven sieve












Near neighbor search

A near neighbor search algorithm takes a list of N points, pre-processes it to
make neighbor queries more efficient.



Near neighbor search

A near neighbor search algorithm takes a list of N points, pre-processes it to
make neighbor queries more efficient.

| want to find points that are close to u in angular distance.
» Angular distance: 6(u,v) = arccos(u, v).
| want to do this for many different w.
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List-size preserving parameterization

Special case:
» Input consists of NV uniformly random points.

> N large enough to ensure that there are N neighboring pairs.

Write Cy(0) for the spherical measure of

Cap(u, 0) = {v: 0(u,v) < 6}.

N (;V )cd«n,

N =~ 2/Cd(9)

Then

equiv.



Algorithm: AllPairs / Nguyen—Vidick sieve

Input: list L of size N.

Search:
1. Number the points vy, v9,v3,..., 0N
2. Test O(v;,vj) <@ for1 <i<j<N



Cost of AllPairs / Nguyen—Vidick sieve

List-size preserving case
Classical search

Nguyen—Vidick (2008): (1/Cd(0))2+0(1)

Quantum search
Laarhoven—Mosca—van de Pol (2014): (1/Cy(#))5+e()



Cost of AllPairs / Nguyen—Vidick sieve

List-size preserving case

Classical search
Nguyen—Vidick (2008): (1/Cd(0))2+0(1)

(1/Cy(m/3))2+oW) = 2¢@) where ¢(d) = (0.4150. .. + o(1))d
Quantum search
Laarhoven—Mosca—van de Pol (2014): (1/Cy(#))5+e()

(1/Cy(m/3)) o+ = 2¢d) \where ¢(d) = (0.3112... + o(1))d
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Why care about the polynomial terms?

» Quantum and classical variants have different polynomial factors.
» Quantum advantage is small. Even smaller in more advanced algorithms.
» Polynomial factors are significant in low dimension.



What are the polynomial factors?

> Volume estimates.
» Cost of testing 0(u,v).



What are the polynomial factors?

» Cost of testing 0(u,v).



Search predicates

» Search predicate on X:
f: X —={0,1}

» Kernel of f:

Ker(f) ={z: f(z) = 0}

] = | Ker(f)]
» Predicate f N g defined by:

Ker(f N g) = Ker(f) N Ker(g)



Exhaustive search

g(l) g2 e g4 gb5)



Exhaustive search

1 g(2) s(3) s(4) g5



Exhaustive search

1 1 g3) s(4) &)



Exhaustive search

1 1 1 g4) g5



Exhaustive search

1 1 1 1 g(5)



Exhaustive search



Exhaustive search

g(57)



Exhaustive search



Filtered search

f(4)
g(4)

f(5)
g(5)



Filtered search

f(3)
g(3)

f(4)
g(4)

f(5)
g(5)



Filtered search

1
g(4)

f(5)
g(5)



Filtered search

1
g(4)

1
g(5)



Filtered search
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Filtered search

1 1 1 1 1
g(1) g2 e g4 gb)



Quantum search

For any predicate g and unitary A, define the amplification operator:
G(A,g) ;= AR(A'R,

where

|z) otherwise

R0|$>:{—|x> ifx =0

R, [z) = (-1)" |z).
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Quantum search

Suppose that measuring A |0) yields an element of Ker(g) with probability p.

Grover—Brassard—Hgyer—Mosca—Tapp:

» Measuring
G(A, g)" A |0)

with k = y/1/p yields a root of g w.p. ~ 1...

Boyer—Brassard—Hgyer—Tapp:
» ...even if pis not known.



Filtered quantum search

Parameters m; and ms.
1. Sample j uniformly from {0,...,m; — 1}
2. Sample k uniformly from {0,...,my — 1}
3. Define
A;=G(D, f)D
B = G(A;, fNg)*

4. Prepare and measure the state:

BiA;[0)



Cost of filtered quantum search

Suppose that we know P/y < |g| < vP.



Cost of filtered quantum search

Suppose that we know P/y < |g| < vP.

Proposition

We can choose my and mo such that FilteredQuantumSearch finds a root of
f N g with probability at least 1/8 and has a cost that is dominated by
(approximately)

> y3V'N times the cost of G(g), or
> 2+/7P times the cost of Rng.
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Suppose that we know P/y < |g| < vP.

Proposition

We can choose my and mo such that FilteredQuantumSearch finds a root of
f N g with probability at least 1/8 and has a cost that is dominated by
(approximately)

> ~v1\/N times the cost of G(g), or

2
> §\/7P times the cost of Ryn,.



Cost of filtered quantum search

Suppose that we know P/y < |g| < vP.

Idealized Proposition

We can choose my and ms such that FilteredQuantumSearch finds a root of
f N g and has a cost that is dominated by

> %\/N times the cost of G(g), or
> %x/ﬁ times the cost of Ryn,.



Algorithm: AllPairs / Nguyen—Vidick sieve

Input: list L of size N
1. Number the points vy, v9,v3, ..., 0N
2. Fori=1,...,N
3. Forj=i+1,...,N
4. Test g;(v;) where g;(v;) = [0(v;,v;) > 7/3].



Algorithm: AllPairs / Nguyen—Vidick sieve

Input: list L of size N
1. Number the points vy, v9,v3, ..., 0N
2. Fori=1,...,N
3. Forj=i+1,...,N
4. If fi(v;) then test g;(v;) where g;(v;) = [0(v;,v;) > 7/3].



Algorithm: AllPairs / Nguyen—Vidick sieve

Input: list L of size N
1. Number the points v, vo, U3, ..., VN
2. Fori=1,...,N
3. Forj=i¢4+1,...,N
4. If fi(v;) then test g;(v;) where g;(v;) = [0(v;,v;) > 7/3].

What to use for f; in a filtered search?



XOR + population count

Define a hash function family:

H={ursgn({r,u)) : r €S}



XOR + population count

Fact: hzgd[h(u) # h(v)] =




XOR + population count
0(u,v)

Fact: hEr;d[h(u) # h(v)] =

Let H,(z) = (hi(x), ... hy(x)) for random h; € H.



XOR + population count

. _ 0(u,v)
Fact: hzr;d[h(u) # h(v)] = :

Let H,(z) = (hi(x), ... hy(x)) for random h; € H.

For large n, we have

HammingWeight(H,,(u) ® H,(v)) _ 0(u,v)

~

n ™



XOR + population count

Used as a filter in implementations of sieving algorithms:
» 2014 Fitzpatrick—Bischof-Buchmann—-Dagdelen—Gopfert-Mariano—Yang
» 2018 Ducas
» 2019 Albrecht-Ducas—Herold—Kirshanova—Postlethwaite—Stevens

Earlier algorithmic use
» 1995 Goemans—Williamson
» 2002 Charikar



Algorithm: AllPairs / Nguyen—Vidick sieve

Input: list L of size N Search:
For all 2:
Setup: 1. Load H,(v;)
1. Fix H, 2. Forj=i+1,....N
2. Construct a table 3. Load Hy(vy)
(i, Hy(v;)) 4. If HammingWt(H,(v;) ® Hy(vj)) <k
5 Test 0(v;,v;) < 0.



This work: New python/mpmath package

Calculates the circuit depth, width, gate count (etc.) for popcount and filtered
quantum search subroutines.

Calculates the accuracy of random popcount filters given
» points uniformly distributed on sphere;
» points uniformly distributed in a cap of angle .

Calculates the (normalized) spherical measure of
» caps, using oF} representation of Cy(6)
» intersections of caps, using an integral representation.
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Error correction

Image: Fowler, Mariantoni, Martinis, Cleland. (2012)



Error correction

We consider the added cost of reading syndromes, but not processing them.

(Under the same physical assumptions as Gidney—Ekera (2019))
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Algorithm: RandomBucketSearch / bgj1

Parameters: ¢, 6, Search:

Inout: list I of size N 1. Repeat t times:
PHE- ISt & of size 2. Pick a random point f.

3. Run AllPairs on

Note: Optimal choice of ¢ and 6, is based on volume of the intersection of caps
of angle 6, with centers at distance 7/3.



Cost of RandomBucketSearch
List-size preserving case

Classical search
Albrecht—Ducas—Herold—Kirshanova—Postlethwaite—Stevens

24 where ¢(d) = (0.3494.... 4 o(1))d

Quantum search

24 where ¢(d) = (0.3013... 4 o(1))d
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Algorithm: ListDecodingSearch / BDGL

Parameters: ¢, 6, 6, Fill:

) ) 1. Foreachvin L
Input: list L of size N

2. insert v into Ly if
Setup: f € Cap(v,6:)
Pick a set of ¢t random points F
Initialize ¢ buckets {L;: f € I'} Query:

1. Foreach v in L

2. F,=FnCap(v,by)

3. Run AllPairs on
Lp=1[{Ls: f € F}.



Cost of ListDecodingSearch / BDGL

Classical search
Becker—Ducas—Gama-Laarhoven:

29 where ¢(d) = (0.2924 . ..

Quantum search
Laarhoven:

29 where ¢(d) = (0.2652. ..
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Barriers to a quantum speedup

qRAM

» Known constructions have some cost that grows like N,
» gRAM computations are not necessarily “localizable”.



Barriers to a quantum speedup

Error correction overhead

» Cost of processing syndromes

» Cost of state distillation

» Locality constraints introduced by code
» Probability of failure from logical errors



Barriers to a quantum speedup

Poor parallelization
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Barriers to a quantum speedup

Cost underestimates

» “ldealized proposition”:
P/vy <|g| <~P; Pr[success] > 1/8.

» Use of G(H, f).
“Run AllPairs on Lp =[[{By : f € F;}."
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