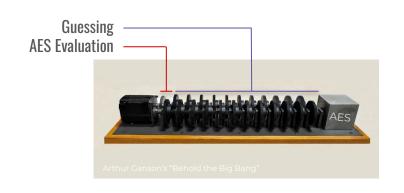
An update on lattice cryptanalysis vol. 2

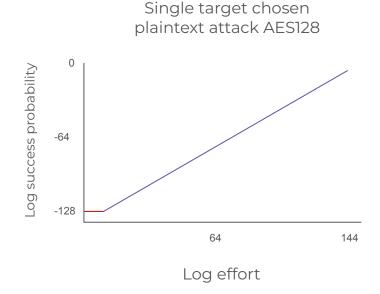
The cost of sieving, and the security margin of Kyber 768

John Schanck Mozilla March 24, 2024

<u>Concrete cryptanalysis</u> — bit security paradigm

Secure systems take more than 2¹²⁸ turns of the crank to break.


Resource realism


- Real attackers are constrained by:
 - Chip area (mass, system fits on earth),
 - Time (human scale),
 - Power (solar flux, other natural resources),
 - Physical law (locality, finiteness, reliability),
- Real attackers maximize their success probability subject to their constraints.

max Pr[success | attack, constraints]

-log₂ of this is an operational definition of "security margin"


<u>Concrete cryptanalysis — resource realist paradigm</u>

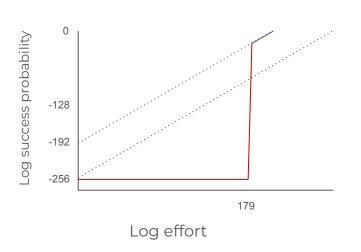
Shape of the effort → success probability curve matters. It defines "security margin" for various constraints.

The dual attack

https://github.com/malb/lattice-estimator commit 00ec72c. dual_hybrid. MATZOV reduction model.

Outline

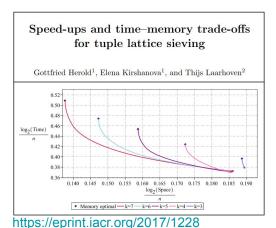
Lattice attacks on Kyber have:

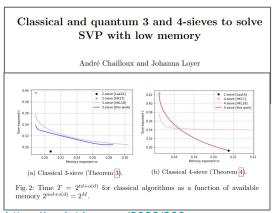

- poor effort → success probability scaling,
- 2. which gets worse when the attacker is memory constrained,
- 3. and even worse when we factor in data movement costs.

Poor effort → success probability scaling

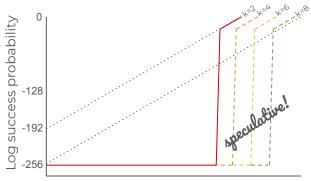
Small number of iterations Huge cost per-iteration

Dual attack on Kyber768 using 2-sieve




<u>Outline</u>

Lattice attacks on Kyber have:


- poor effort → success probability scaling,
- 2. which gets worse when the attacker is memory constrained,
- 3. and even worse when we factor in data movement costs.

Memory constraints lead to worse effort → success probability scaling

Dual attack on Kyber768 using k-sieve

https://eprint.iacr.org/2023/200

Log effort

For Kyber768 (d=538), I suspect you need a memory exponent \sim 0.16 (k = 8?) if you are constrained to \sim 2¹⁰⁰ bits.

Fermi approximation: Is the attacker memory constrained?

Facts:

- Industry consumed ~2⁴³ mm² of wafers in 2022.
- 3D NAND density is $\sim 2^{34}$ bits/mm², or 2^{43} bits/g. 2^{43} mm² · 2^{34} bits / mm² = 2^{77} bits.
- The moon has a mass of 2^{86} g.

$$2^{86} g \cdot 2^{43}$$
 bits $/ g = 2^{129}$ bits.

Conclusion: Yes.

Need density-production product to scale by 2⁵⁰ to store the 2¹²⁷ bit database needed for a 2-sieve attack on Kyber768.

Annual Silicon* Industry Trends

	2019	2020	2021	2022	2023
Area Shipments (MSI)	11,810	12,407	14,165	14,713	12,602
Revenues (\$Billion)	11.2	11.2	12.6	13.8	12.3

Source: SEMI (www.semi.org), February 2024

*Data cited in this release include polished silicon wafers, including those used as virgin test wafers, as well as epitaxial silicon wafers, and non-polished silicon wafers shipped by the wafer manufacturers to end users. Shipments are for semiconductor applications only and do not include solar applications.

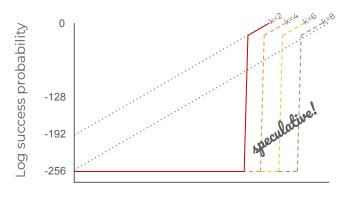
<u>Outline</u>

Lattice attacks on Kyber have:

- 1. poor effort → success probability scaling,
- 2. which gets worse when the attacker is memory constrained,
- 3. and even worse when we factor in data movement costs.

Does memory-access add exponential cost?

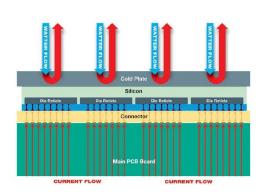
Subject of intense discussion for 2-sieves. More work needed for k-sieves

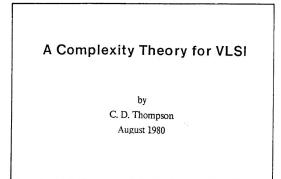

Memory adds no cost to lattice sieving for computers in 3 or more spatial dimensions

Samuel Jaques

Department of Combinatorics and Optimization
University of Waterloo
sejaques@uwaterloo.ca

https://eprint.iacr.org/2024/080


Dual attack on Kyber768 using k-sieve



Log effort

Current understanding: all curves move right by (small) exponential factor on 2D mesh architecture.

Why consider 2D mesh computers?



Figure 4: This side view shows the water movement assembly (top), and the air movement infrastructure — fans and a heat exchanger (bottom half).

In particular, the area A and time T taken by any

VLSI chip using any algorithm to perform an N-point Fourier transform must satisfy $AT^2 \ge cN^2log^2N$, for some fixed c>0. A more general result for both sorting and Fourier transformation is that $AT^{2x} = \Omega(N^{1+x}log^{2x}N)$, for any x in the range $0 \le x \le I$. Also, the energy dissipated by a VLSI chip during the solution of either of these problems is at least $\Omega(N^{3/2}logN)$. The tightness of these bounds is demonstrated by the existence of nearly optimal circuits for both sorting and Fourier transformation. The circuits based on the shuffle-exchange interconnection pattern are fast but large: $T = O(log^2N)$ for Fourier transformation, $T = O(log^3N)$ for sorting; both have area A of at most $O(N^2/log^{1/2}N)$. The circuits based on the mesh interconnection pattern are slow but small: $T = O(N^{1/2}loglogN)$, $A = O(N log^2N)$.

Fermi approximation: Cost of memory with mesh routing

Facts:

- 2022 silicon wafer supply → 2^{27.5} WSE-3s
 - \circ 2^{47.5} cores,
 - o 2⁶⁶ bits of memory,
 - 2⁸⁵ bits/s mesh bandwidth,
 - Sort 2⁶⁶ bits of small data in a few minutes,
 - 4 TW of power.
- Annual global electricity supply ~30000 TWh 30000 TWh / 3600 s = 8.3 TW

Conclusion:

 Already energy and chip-area constrained for a 2⁶⁶ bit mesh sort. Factor 2⁶¹ away from Kyber768 2-sieve size.

Annual Silicon* Industry Trends

	2019	2020	2021	2022	2023
Area Shipments (MSI)	11,810	12,407	14,165	14,713	12,602
Revenues (\$Billion)	11.2	11.2	12.6	13.8	12.3

Source: SEMI (www.semi.org), February 2024

"Data cited in this release include polished silicon wafers, including those used as virgin test wafers, as well as epitaxial silicon wafers, and non-polished silicon wafers shipped by the wafer manufacturers to end users. Shipments are for semiconductor applications only and do not include solar applications.

Breakdown of global electricity supply and emissions, 2021-2026

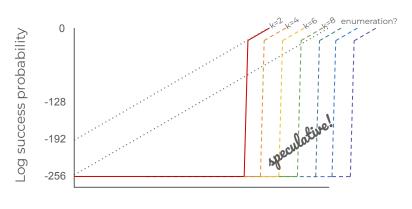
TWh	2021	2022	2023	2026	Growth rate 2021- 2022	Growth rate 2022- 2023
Total Generation	28 426	29 124	29 734	32 694	2.5%	2.1%

Cerebras Wafer-Scale Engine **Fabrication process** 5nm Silicon area 46.225mm Transistors 4 Trillion Al-optimized cores 900,000 Memory (on-chip) **44GB** Memory bandwidth 21PB/s Cerebras WSE-3 Fabric bandwidth 4 Trillion Transistors 214Pb/s 46,225 mm² Silicon

<u>Outline</u>

Lattice attacks on Kyber have:

- 1. poor effort → success probability scaling,
- 2. which gets worse when the attacker is memory constrained,
- 3. and even worse when we factor in data movement costs.


Open questions

- Re-evaluate FFT distinguisher step of the dual attack with memory / interconnect constraints.
- Compute non-asymptotic cost tables for k-sieves.
- Complete "resource realist" analysis of lattice attacks.
 - ... with memory constraints.
 - ... with energy or operation constraints.
- Determine best attack on Kyber768 for constrained adversaries.
 - Seed guessing?
 - Decryption failure attacks?
 - Combinatorial / hybrid attacks?

<u>Takeaways</u>

- Lattice attacks have poor effort → success scaling.
- 2-sieve memory is unobtainable.
- K-sieving reduces memory but adds exponential cost.
- Interconnect and chip area constraints add further cost, even if only subexponential.
- While there's a significant amount of analysis left to be done, it's not unreasonable to think that Kyber768 is as secure as AES-256.

Log effort